mobenta commited on
Commit
4502b8a
·
verified ·
1 Parent(s): 96ef188

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +106 -0
app.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import torch
3
+ import numpy as np
4
+ from PIL import Image
5
+ import gradio as gr
6
+ from nodes import NODE_CLASS_MAPPINGS
7
+ from totoro_extras import nodes_custom_sampler
8
+ from totoro_extras import nodes_flux
9
+
10
+ # Set device to GPU if available
11
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
12
+
13
+ # Load the necessary models and move them to the GPU
14
+ CheckpointLoaderSimple = NODE_CLASS_MAPPINGS["CheckpointLoaderSimple"]()
15
+ LoraLoader = NODE_CLASS_MAPPINGS["LoraLoader"]()
16
+ FluxGuidance = nodes_flux.NODE_CLASS_MAPPINGS["FluxGuidance"]()
17
+ RandomNoise = nodes_custom_sampler.NODE_CLASS_MAPPINGS["RandomNoise"]()
18
+ BasicGuider = nodes_custom_sampler.NODE_CLASS_MAPPINGS["BasicGuider"]()
19
+ KSamplerSelect = nodes_custom_sampler.NODE_CLASS_MAPPINGS["KSamplerSelect"]()
20
+ BasicScheduler = nodes_custom_sampler.NODE_CLASS_MAPPINGS["BasicScheduler"]()
21
+ SamplerCustomAdvanced = nodes_custom_sampler.NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
22
+ VAELoader = NODE_CLASS_MAPPINGS["VAELoader"]()
23
+ VAEDecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
24
+ EmptyLatentImage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
25
+
26
+ # Load checkpoint and move to GPU
27
+ with torch.inference_mode():
28
+ unet, clip, vae = CheckpointLoaderSimple.load_checkpoint("flux1-dev-fp8-all-in-one.safetensors")
29
+ unet = unet.to(device)
30
+ clip = clip.to(device)
31
+ vae = vae.to(device)
32
+
33
+ # Function to find the closest multiple of a number
34
+ def closestNumber(n, m):
35
+ q = int(n / m)
36
+ n1 = m * q
37
+ if (n * m) > 0:
38
+ n2 = m * (q + 1)
39
+ else:
40
+ n2 = m * (q - 1)
41
+ if abs(n - n1) < abs(n - n2):
42
+ return n1
43
+ return n2
44
+
45
+ # Main generation function
46
+ @torch.inference_mode()
47
+ def generate(positive_prompt, width, height, seed, steps, sampler_name, scheduler, guidance, lora_strength_model, lora_strength_clip):
48
+ global unet, clip
49
+ if seed == 0:
50
+ seed = random.randint(0, 18446744073709551615)
51
+ print(seed)
52
+
53
+ # Load LoRA models and move them to GPU
54
+ unet_lora, clip_lora = LoraLoader.load_lora(unet, clip, "flux_realism_lora.safetensors", lora_strength_model, lora_strength_clip)
55
+ unet_lora = unet_lora.to(device)
56
+ clip_lora = clip_lora.to(device)
57
+
58
+ # Encode prompt and apply guidance
59
+ cond, pooled = clip_lora.encode_from_tokens(clip_lora.tokenize(positive_prompt), return_pooled=True)
60
+ cond = [[cond, {"pooled_output": pooled}]]
61
+ cond = FluxGuidance.append(cond, guidance)[0]
62
+
63
+ # Generate noise and move it to the GPU
64
+ noise = RandomNoise.get_noise(seed)[0].to(device)
65
+
66
+ # Setup guider and sampler
67
+ guider = BasicGuider.get_guider(unet_lora, cond)[0]
68
+ sampler = KSamplerSelect.get_sampler(sampler_name)[0]
69
+
70
+ # Generate sigmas and latent image
71
+ sigmas = BasicScheduler.get_sigmas(unet_lora, scheduler, steps, 1.0)[0]
72
+ latent_image = EmptyLatentImage.generate(closestNumber(width, 16), closestNumber(height, 16))[0].to(device)
73
+
74
+ # Perform sampling
75
+ sample, sample_denoised = SamplerCustomAdvanced.sample(noise, guider, sampler, sigmas, latent_image)
76
+
77
+ # Decode the latent image to a regular image
78
+ decoded = VAEDecode.decode(vae, sample)[0].detach().cpu()
79
+
80
+ # Convert to image and save
81
+ output_image = Image.fromarray(np.array(decoded * 255, dtype=np.uint8)[0])
82
+ output_image.save("/content/flux.png")
83
+ return "/content/flux.png"
84
+
85
+ # Setup the Gradio interface
86
+ with gr.Blocks(analytics_enabled=False) as demo:
87
+ with gr.Row():
88
+ with gr.Column():
89
+ positive_prompt = gr.Textbox(lines=3, interactive=True, value="cute anime girl with massive fluffy fennec ears and a big fluffy tail blonde messy long hair blue eyes wearing a maid outfit with a long black dress with a gold leaf pattern and a white apron eating a slice of an apple pie in the kitchen of an old dark victorian mansion with a bright window and very expensive stuff everywhere", label="Prompt")
90
+ width = gr.Slider(minimum=256, maximum=2048, value=1024, step=16, label="width")
91
+ height = gr.Slider(minimum=256, maximum=2048, value=1024, step=16, label="height")
92
+ seed = gr.Slider(minimum=0, maximum=18446744073709551615, value=0, step=1, label="seed (0=random)")
93
+ steps = gr.Slider(minimum=4, maximum=50, value=20, step=1, label="steps")
94
+ guidance = gr.Slider(minimum=0, maximum=20, value=3.5, step=0.5, label="guidance")
95
+ lora_strength_model = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.1, label="lora_strength_model")
96
+ lora_strength_clip = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.1, label="lora_strength_clip")
97
+ sampler_name = gr.Dropdown(["euler", "heun", "heunpp2", "dpm_2", "lms", "dpmpp_2m", "ipndm", "deis", "ddim", "uni_pc", "uni_pc_bh2"], label="sampler_name", value="euler")
98
+ scheduler = gr.Dropdown(["normal", "sgm_uniform", "simple", "ddim_uniform"], label="scheduler", value="simple")
99
+ generate_button = gr.Button("Generate")
100
+ with gr.Column():
101
+ output_image = gr.Image(label="Generated image", interactive=False)
102
+
103
+ generate_button.click(fn=generate, inputs=[positive_prompt, width, height, seed, steps, sampler_name, scheduler, guidance, lora_strength_model, lora_strength_clip], outputs=output_image)
104
+
105
+ # Launch the Gradio interface
106
+ demo.queue().launch(inline=False, share=True, debug=True)