import os import sys import random import torch import numpy as np from PIL import Image import gradio as gr # Check and add the ComfyUI repository path to sys.path repo_path = './ComfyUI/totoro_extras' print(f"Checking for repository path: {repo_path}") if not os.path.exists(repo_path): raise FileNotFoundError(f"Repository path '{repo_path}' not found. Make sure the ComfyUI repository is cloned correctly.") sys.path.append(repo_path) print(f"Repository path added to sys.path: {repo_path}") # Import nodes and custom modules from nodes import NODE_CLASS_MAPPINGS from totoro_extras import nodes_custom_sampler, nodes_flux # Initialize necessary components from the nodes CheckpointLoaderSimple = NODE_CLASS_MAPPINGS["CheckpointLoaderSimple"]() LoraLoader = NODE_CLASS_MAPPINGS["LoraLoader"]() FluxGuidance = nodes_flux.NODE_CLASS_MAPPINGS["FluxGuidance"]() RandomNoise = nodes_custom_sampler.NODE_CLASS_MAPPINGS["RandomNoise"]() BasicGuider = nodes_custom_sampler.NODE_CLASS_MAPPINGS["BasicGuider"]() KSamplerSelect = nodes_custom_sampler.NODE_CLASS_MAPPINGS["KSamplerSelect"]() BasicScheduler = nodes_custom_sampler.NODE_CLASS_MAPPINGS["BasicScheduler"]() SamplerCustomAdvanced = nodes_custom_sampler.NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() VAELoader = NODE_CLASS_MAPPINGS["VAELoader"]() VAEDecode = NODE_CLASS_MAPPINGS["VAEDecode"]() EmptyLatentImage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]() # Load checkpoints and models with torch.inference_mode(): checkpoint_path = "models/checkpoints/flux1-dev-fp8-all-in-one.safetensors" unet, clip, vae = CheckpointLoaderSimple.load_checkpoint(checkpoint_path) def closestNumber(n, m): q = int(n / m) n1 = m * q if (n * m) > 0: n2 = m * (q + 1) else: n2 = m * (q - 1) if abs(n - n1) < abs(n - n2): return n1 return n2 @torch.inference_mode() def generate(positive_prompt, width, height, seed, steps, sampler_name, scheduler, guidance, lora_strength_model, lora_strength_clip): global unet, clip if seed == 0: seed = random.randint(0, 18446744073709551615) print(f"Seed used: {seed}") # Load LoRA models lora_path = "models/loras/flux_realism_lora.safetensors" unet_lora, clip_lora = LoraLoader.load_lora(unet, clip, lora_path, lora_strength_model, lora_strength_clip) # Encode the prompt cond, pooled = clip_lora.encode_from_tokens(clip_lora.tokenize(positive_prompt), return_pooled=True) cond = [[cond, {"pooled_output": pooled}]] cond = FluxGuidance.append(cond, guidance)[0] # Generate noise noise = RandomNoise.get_noise(seed)[0] # Get guider and sampler guider = BasicGuider.get_guider(unet_lora, cond)[0] sampler = KSamplerSelect.get_sampler(sampler_name)[0] # Get scheduling sigmas sigmas = BasicScheduler.get_sigmas(unet_lora, scheduler, steps, 1.0)[0] # Generate latent image latent_image = EmptyLatentImage.generate(closestNumber(width, 16), closestNumber(height, 16))[0] # Sample and decode the image sample, sample_denoised = SamplerCustomAdvanced.sample(noise, guider, sampler, sigmas, latent_image) decoded = VAEDecode.decode(vae, sample)[0].detach() # Convert to image and return return Image.fromarray(np.array(decoded * 255, dtype=np.uint8)[0]) # Define Gradio interface with gr.Blocks(analytics_enabled=False) as demo: with gr.Row(): with gr.Column(): positive_prompt = gr.Textbox( lines=3, interactive=True, value="cute anime girl with massive fluffy fennec ears and a big fluffy tail blonde messy long hair blue eyes wearing a maid outfit with a long black dress with a gold leaf pattern and a white apron eating a slice of an apple pie in the kitchen of an old dark victorian mansion with a bright window and very expensive stuff everywhere", label="Prompt" ) width = gr.Slider(minimum=256, maximum=2048, value=1024, step=16, label="width") height = gr.Slider(minimum=256, maximum=2048, value=1024, step=16, label="height") seed = gr.Slider(minimum=0, maximum=18446744073709551615, value=0, step=1, label="seed (0=random)") steps = gr.Slider(minimum=4, maximum=50, value=20, step=1, label="steps") guidance = gr.Slider(minimum=0, maximum=20, value=3.5, step=0.5, label="guidance") lora_strength_model = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.1, label="lora_strength_model") lora_strength_clip = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.1, label="lora_strength_clip") sampler_name = gr.Dropdown( ["euler", "heun", "heunpp2", "dpm_2", "lms", "dpmpp_2m", "ipndm", "deis", "ddim", "uni_pc", "uni_pc_bh2"], label="sampler_name", value="euler" ) scheduler = gr.Dropdown( ["normal", "sgm_uniform", "simple", "ddim_uniform"], label="scheduler", value="simple" ) generate_button = gr.Button("Generate") with gr.Column(): output_image = gr.Image(label="Generated image", interactive=False) generate_button.click( fn=generate, inputs=[ positive_prompt, width, height, seed, steps, sampler_name, scheduler, guidance, lora_strength_model, lora_strength_clip ], outputs=output_image ) demo.queue().launch(inline=False, share=True, debug=True)