Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	File size: 30,729 Bytes
			
			50eec37  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669  | 
								"""
    This file is part of ComfyUI.
    Copyright (C) 2024 Comfy
    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
"""
from __future__ import annotations
import comfy.utils
import comfy.model_management
import comfy.model_base
import logging
import torch
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}
def load_lora(lora, to_load, log_missing=True):
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)
        dora_scale_name = "{}.dora_scale".format(x)
        dora_scale = None
        if dora_scale_name in lora.keys():
            dora_scale = lora[dora_scale_name]
            loaded_keys.add(dora_scale_name)
        reshape_name = "{}.reshape_weight".format(x)
        reshape = None
        if reshape_name in lora.keys():
            try:
                reshape = lora[reshape_name].tolist()
                loaded_keys.add(reshape_name)
            except:
                pass
        regular_lora = "{}.lora_up.weight".format(x)
        diffusers_lora = "{}_lora.up.weight".format(x)
        diffusers2_lora = "{}.lora_B.weight".format(x)
        diffusers3_lora = "{}.lora.up.weight".format(x)
        mochi_lora = "{}.lora_B".format(x)
        transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
        A_name = None
        if regular_lora in lora.keys():
            A_name = regular_lora
            B_name = "{}.lora_down.weight".format(x)
            mid_name = "{}.lora_mid.weight".format(x)
        elif diffusers_lora in lora.keys():
            A_name = diffusers_lora
            B_name = "{}_lora.down.weight".format(x)
            mid_name = None
        elif diffusers2_lora in lora.keys():
            A_name = diffusers2_lora
            B_name = "{}.lora_A.weight".format(x)
            mid_name = None
        elif diffusers3_lora in lora.keys():
            A_name = diffusers3_lora
            B_name = "{}.lora.down.weight".format(x)
            mid_name = None
        elif mochi_lora in lora.keys():
            A_name = mochi_lora
            B_name = "{}.lora_A".format(x)
            mid_name = None
        elif transformers_lora in lora.keys():
            A_name = transformers_lora
            B_name ="{}.lora_linear_layer.down.weight".format(x)
            mid_name = None
        if A_name is not None:
            mid = None
            if mid_name is not None and mid_name in lora.keys():
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale, reshape))
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
        ######## loha
        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
        if hada_w1_a_name in lora.keys():
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)
            patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale))
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)
        ######## lokr
        lokr_w1_name = "{}.lokr_w1".format(x)
        lokr_w2_name = "{}.lokr_w2".format(x)
        lokr_w1_a_name = "{}.lokr_w1_a".format(x)
        lokr_w1_b_name = "{}.lokr_w1_b".format(x)
        lokr_t2_name = "{}.lokr_t2".format(x)
        lokr_w2_a_name = "{}.lokr_w2_a".format(x)
        lokr_w2_b_name = "{}.lokr_w2_b".format(x)
        lokr_w1 = None
        if lokr_w1_name in lora.keys():
            lokr_w1 = lora[lokr_w1_name]
            loaded_keys.add(lokr_w1_name)
        lokr_w2 = None
        if lokr_w2_name in lora.keys():
            lokr_w2 = lora[lokr_w2_name]
            loaded_keys.add(lokr_w2_name)
        lokr_w1_a = None
        if lokr_w1_a_name in lora.keys():
            lokr_w1_a = lora[lokr_w1_a_name]
            loaded_keys.add(lokr_w1_a_name)
        lokr_w1_b = None
        if lokr_w1_b_name in lora.keys():
            lokr_w1_b = lora[lokr_w1_b_name]
            loaded_keys.add(lokr_w1_b_name)
        lokr_w2_a = None
        if lokr_w2_a_name in lora.keys():
            lokr_w2_a = lora[lokr_w2_a_name]
            loaded_keys.add(lokr_w2_a_name)
        lokr_w2_b = None
        if lokr_w2_b_name in lora.keys():
            lokr_w2_b = lora[lokr_w2_b_name]
            loaded_keys.add(lokr_w2_b_name)
        lokr_t2 = None
        if lokr_t2_name in lora.keys():
            lokr_t2 = lora[lokr_t2_name]
            loaded_keys.add(lokr_t2_name)
        if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
            patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale))
        #glora
        a1_name = "{}.a1.weight".format(x)
        a2_name = "{}.a2.weight".format(x)
        b1_name = "{}.b1.weight".format(x)
        b2_name = "{}.b2.weight".format(x)
        if a1_name in lora:
            patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale))
            loaded_keys.add(a1_name)
            loaded_keys.add(a2_name)
            loaded_keys.add(b1_name)
            loaded_keys.add(b2_name)
        w_norm_name = "{}.w_norm".format(x)
        b_norm_name = "{}.b_norm".format(x)
        w_norm = lora.get(w_norm_name, None)
        b_norm = lora.get(b_norm_name, None)
        if w_norm is not None:
            loaded_keys.add(w_norm_name)
            patch_dict[to_load[x]] = ("diff", (w_norm,))
            if b_norm is not None:
                loaded_keys.add(b_norm_name)
                patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,))
        diff_name = "{}.diff".format(x)
        diff_weight = lora.get(diff_name, None)
        if diff_weight is not None:
            patch_dict[to_load[x]] = ("diff", (diff_weight,))
            loaded_keys.add(diff_name)
        diff_bias_name = "{}.diff_b".format(x)
        diff_bias = lora.get(diff_bias_name, None)
        if diff_bias is not None:
            patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,))
            loaded_keys.add(diff_bias_name)
        set_weight_name = "{}.set_weight".format(x)
        set_weight = lora.get(set_weight_name, None)
        if set_weight is not None:
            patch_dict[to_load[x]] = ("set", (set_weight,))
            loaded_keys.add(set_weight_name)
    if log_missing:
        for x in lora.keys():
            if x not in loaded_keys:
                logging.warning("lora key not loaded: {}".format(x))
    return patch_dict
def model_lora_keys_clip(model, key_map={}):
    sdk = model.state_dict().keys()
    for k in sdk:
        if k.endswith(".weight"):
            key_map["text_encoders.{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
    clip_l_present = False
    clip_g_present = False
    for b in range(32): #TODO: clean up
        for c in LORA_CLIP_MAP:
            k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
                key_map[lora_key] = k
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
                key_map[lora_key] = k
                lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                key_map[lora_key] = k
            k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
                key_map[lora_key] = k
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                key_map[lora_key] = k
                clip_l_present = True
                lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                key_map[lora_key] = k
            k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                clip_g_present = True
                if clip_l_present:
                    lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                    key_map[lora_key] = k
                    lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                    key_map[lora_key] = k
                else:
                    lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
                    key_map[lora_key] = k
                    lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                    key_map[lora_key] = k
                    lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config
                    key_map[lora_key] = k
    for k in sdk:
        if k.endswith(".weight"):
            if k.startswith("t5xxl.transformer."):#OneTrainer SD3 and Flux lora
                l_key = k[len("t5xxl.transformer."):-len(".weight")]
                t5_index = 1
                if clip_g_present:
                    t5_index += 1
                if clip_l_present:
                    t5_index += 1
                    if t5_index == 2:
                        key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k #OneTrainer Flux
                        t5_index += 1
                key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k
            elif k.startswith("hydit_clip.transformer.bert."): #HunyuanDiT Lora
                l_key = k[len("hydit_clip.transformer.bert."):-len(".weight")]
                lora_key = "lora_te1_{}".format(l_key.replace(".", "_"))
                key_map[lora_key] = k
    k = "clip_g.transformer.text_projection.weight"
    if k in sdk:
        key_map["lora_prior_te_text_projection"] = k #cascade lora?
        # key_map["text_encoder.text_projection"] = k #TODO: check if other lora have the text_projection too
        key_map["lora_te2_text_projection"] = k #OneTrainer SD3 lora
    k = "clip_l.transformer.text_projection.weight"
    if k in sdk:
        key_map["lora_te1_text_projection"] = k #OneTrainer SD3 lora, not necessary but omits warning
    return key_map
def model_lora_keys_unet(model, key_map={}):
    sd = model.state_dict()
    sdk = sd.keys()
    for k in sdk:
        if k.startswith("diffusion_model."):
            if k.endswith(".weight"):
                key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
                key_map["lora_unet_{}".format(key_lora)] = k
                key_map["{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names
            else:
                key_map["{}".format(k)] = k #generic lora format for not .weight without any weird key names
    diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
    for k in diffusers_keys:
        if k.endswith(".weight"):
            unet_key = "diffusion_model.{}".format(diffusers_keys[k])
            key_lora = k[:-len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = unet_key
            key_map["lycoris_{}".format(key_lora)] = unet_key #simpletuner lycoris format
            diffusers_lora_prefix = ["", "unet."]
            for p in diffusers_lora_prefix:
                diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
                if diffusers_lora_key.endswith(".to_out.0"):
                    diffusers_lora_key = diffusers_lora_key[:-2]
                key_map[diffusers_lora_key] = unet_key
    if isinstance(model, comfy.model_base.StableCascade_C):
        for k in sdk:
            if k.startswith("diffusion_model."):
                if k.endswith(".weight"):
                    key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
                    key_map["lora_prior_unet_{}".format(key_lora)] = k
    if isinstance(model, comfy.model_base.SD3): #Diffusers lora SD3
        diffusers_keys = comfy.utils.mmdit_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
        for k in diffusers_keys:
            if k.endswith(".weight"):
                to = diffusers_keys[k]
                key_lora = "transformer.{}".format(k[:-len(".weight")]) #regular diffusers sd3 lora format
                key_map[key_lora] = to
                key_lora = "base_model.model.{}".format(k[:-len(".weight")]) #format for flash-sd3 lora and others?
                key_map[key_lora] = to
                key_lora = "lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_")) #OneTrainer lora
                key_map[key_lora] = to
                key_lora = "lycoris_{}".format(k[:-len(".weight")].replace(".", "_")) #simpletuner lycoris format
                key_map[key_lora] = to
    if isinstance(model, comfy.model_base.AuraFlow): #Diffusers lora AuraFlow
        diffusers_keys = comfy.utils.auraflow_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
        for k in diffusers_keys:
            if k.endswith(".weight"):
                to = diffusers_keys[k]
                key_lora = "transformer.{}".format(k[:-len(".weight")]) #simpletrainer and probably regular diffusers lora format
                key_map[key_lora] = to
    if isinstance(model, comfy.model_base.PixArt):
        diffusers_keys = comfy.utils.pixart_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
        for k in diffusers_keys:
            if k.endswith(".weight"):
                to = diffusers_keys[k]
                key_lora = "transformer.{}".format(k[:-len(".weight")]) #default format
                key_map[key_lora] = to
                key_lora = "base_model.model.{}".format(k[:-len(".weight")]) #diffusers training script
                key_map[key_lora] = to
                key_lora = "unet.base_model.model.{}".format(k[:-len(".weight")]) #old reference peft script
                key_map[key_lora] = to
    if isinstance(model, comfy.model_base.HunyuanDiT):
        for k in sdk:
            if k.startswith("diffusion_model.") and k.endswith(".weight"):
                key_lora = k[len("diffusion_model."):-len(".weight")]
                key_map["base_model.model.{}".format(key_lora)] = k #official hunyuan lora format
    if isinstance(model, comfy.model_base.Flux): #Diffusers lora Flux
        diffusers_keys = comfy.utils.flux_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
        for k in diffusers_keys:
            if k.endswith(".weight"):
                to = diffusers_keys[k]
                key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format
                key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris
                key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer
    if isinstance(model, comfy.model_base.GenmoMochi):
        for k in sdk:
            if k.startswith("diffusion_model.") and k.endswith(".weight"): #Official Mochi lora format
                key_lora = k[len("diffusion_model."):-len(".weight")]
                key_map["{}".format(key_lora)] = k
    if isinstance(model, comfy.model_base.HunyuanVideo):
        for k in sdk:
            if k.startswith("diffusion_model.") and k.endswith(".weight"):
                # diffusion-pipe lora format
                key_lora = k
                key_lora = key_lora.replace("_mod.lin.", "_mod.linear.").replace("_attn.qkv.", "_attn_qkv.").replace("_attn.proj.", "_attn_proj.")
                key_lora = key_lora.replace("mlp.0.", "mlp.fc1.").replace("mlp.2.", "mlp.fc2.")
                key_lora = key_lora.replace(".modulation.lin.", ".modulation.linear.")
                key_lora = key_lora[len("diffusion_model."):-len(".weight")]
                key_map["transformer.{}".format(key_lora)] = k
                key_map["diffusion_model.{}".format(key_lora)] = k  # Old loras
    return key_map
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
    dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
    lora_diff *= alpha
    weight_calc = weight + function(lora_diff).type(weight.dtype)
    weight_norm = (
        weight_calc.transpose(0, 1)
        .reshape(weight_calc.shape[1], -1)
        .norm(dim=1, keepdim=True)
        .reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
        .transpose(0, 1)
    )
    weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
    if strength != 1.0:
        weight_calc -= weight
        weight += strength * (weight_calc)
    else:
        weight[:] = weight_calc
    return weight
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
    """
    Pad a tensor to a new shape with zeros.
    Args:
        tensor (torch.Tensor): The original tensor to be padded.
        new_shape (List[int]): The desired shape of the padded tensor.
    Returns:
        torch.Tensor: A new tensor padded with zeros to the specified shape.
    Note:
        If the new shape is smaller than the original tensor in any dimension,
        the original tensor will be truncated in that dimension.
    """
    if any([new_shape[i] < tensor.shape[i] for i in range(len(new_shape))]):
        raise ValueError("The new shape must be larger than the original tensor in all dimensions")
    if len(new_shape) != len(tensor.shape):
        raise ValueError("The new shape must have the same number of dimensions as the original tensor")
    # Create a new tensor filled with zeros
    padded_tensor = torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device)
    # Create slicing tuples for both tensors
    orig_slices = tuple(slice(0, dim) for dim in tensor.shape)
    new_slices = tuple(slice(0, dim) for dim in tensor.shape)
    # Copy the original tensor into the new tensor
    padded_tensor[new_slices] = tensor[orig_slices]
    return padded_tensor
def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, original_weights=None):
    for p in patches:
        strength = p[0]
        v = p[1]
        strength_model = p[2]
        offset = p[3]
        function = p[4]
        if function is None:
            function = lambda a: a
        old_weight = None
        if offset is not None:
            old_weight = weight
            weight = weight.narrow(offset[0], offset[1], offset[2])
        if strength_model != 1.0:
            weight *= strength_model
        if isinstance(v, list):
            v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), )
        if len(v) == 1:
            patch_type = "diff"
        elif len(v) == 2:
            patch_type = v[0]
            v = v[1]
        if patch_type == "diff":
            diff: torch.Tensor = v[0]
            # An extra flag to pad the weight if the diff's shape is larger than the weight
            do_pad_weight = len(v) > 1 and v[1]['pad_weight']
            if do_pad_weight and diff.shape != weight.shape:
                logging.info("Pad weight {} from {} to shape: {}".format(key, weight.shape, diff.shape))
                weight = pad_tensor_to_shape(weight, diff.shape)
            if strength != 0.0:
                if diff.shape != weight.shape:
                    logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, diff.shape, weight.shape))
                else:
                    weight += function(strength * comfy.model_management.cast_to_device(diff, weight.device, weight.dtype))
        elif patch_type == "set":
            weight.copy_(v[0])
        elif patch_type == "model_as_lora":
            target_weight: torch.Tensor = v[0]
            diff_weight = comfy.model_management.cast_to_device(target_weight, weight.device, intermediate_dtype) - \
                          comfy.model_management.cast_to_device(original_weights[key][0][0], weight.device, intermediate_dtype)
            weight += function(strength * comfy.model_management.cast_to_device(diff_weight, weight.device, weight.dtype))
        elif patch_type == "lora": #lora/locon
            mat1 = comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype)
            mat2 = comfy.model_management.cast_to_device(v[1], weight.device, intermediate_dtype)
            dora_scale = v[4]
            reshape = v[5]
            if reshape is not None:
                weight = pad_tensor_to_shape(weight, reshape)
            if v[2] is not None:
                alpha = v[2] / mat2.shape[0]
            else:
                alpha = 1.0
            if v[3] is not None:
                #locon mid weights, hopefully the math is fine because I didn't properly test it
                mat3 = comfy.model_management.cast_to_device(v[3], weight.device, intermediate_dtype)
                final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
                mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
            try:
                lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
                if dora_scale is not None:
                    weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
                else:
                    weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
            except Exception as e:
                logging.error("ERROR {} {} {}".format(patch_type, key, e))
        elif patch_type == "lokr":
            w1 = v[0]
            w2 = v[1]
            w1_a = v[3]
            w1_b = v[4]
            w2_a = v[5]
            w2_b = v[6]
            t2 = v[7]
            dora_scale = v[8]
            dim = None
            if w1 is None:
                dim = w1_b.shape[0]
                w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype),
                                comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype))
            else:
                w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype)
            if w2 is None:
                dim = w2_b.shape[0]
                if t2 is None:
                    w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype),
                                    comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype))
                else:
                    w2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                        comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
                                        comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype),
                                        comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype))
            else:
                w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype)
            if len(w2.shape) == 4:
                w1 = w1.unsqueeze(2).unsqueeze(2)
            if v[2] is not None and dim is not None:
                alpha = v[2] / dim
            else:
                alpha = 1.0
            try:
                lora_diff = torch.kron(w1, w2).reshape(weight.shape)
                if dora_scale is not None:
                    weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
                else:
                    weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
            except Exception as e:
                logging.error("ERROR {} {} {}".format(patch_type, key, e))
        elif patch_type == "loha":
            w1a = v[0]
            w1b = v[1]
            if v[2] is not None:
                alpha = v[2] / w1b.shape[0]
            else:
                alpha = 1.0
            w2a = v[3]
            w2b = v[4]
            dora_scale = v[7]
            if v[5] is not None: #cp decomposition
                t1 = v[5]
                t2 = v[6]
                m1 = torch.einsum('i j k l, j r, i p -> p r k l',
                                    comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
                                    comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
                                    comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))
                m2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                    comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
                                    comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
                                    comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
            else:
                m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
                                comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
                m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
                                comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))
            try:
                lora_diff = (m1 * m2).reshape(weight.shape)
                if dora_scale is not None:
                    weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
                else:
                    weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
            except Exception as e:
                logging.error("ERROR {} {} {}".format(patch_type, key, e))
        elif patch_type == "glora":
            dora_scale = v[5]
            old_glora = False
            if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]:
                rank = v[0].shape[0]
                old_glora = True
            if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
                if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
                    pass
                else:
                    old_glora = False
                    rank = v[1].shape[0]
            a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
            a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
            b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
            b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)
            if v[4] is not None:
                alpha = v[4] / rank
            else:
                alpha = 1.0
            try:
                if old_glora:
                    lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
                else:
                    if weight.dim() > 2:
                        lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
                    else:
                        lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
                    lora_diff += torch.mm(b1, b2).reshape(weight.shape)
                if dora_scale is not None:
                    weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
                else:
                    weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
            except Exception as e:
                logging.error("ERROR {} {} {}".format(patch_type, key, e))
        else:
            logging.warning("patch type not recognized {} {}".format(patch_type, key))
        if old_weight is not None:
            weight = old_weight
    return weight
 |