Spaces:
Running
on
Zero
Running
on
Zero
| # Original: https://github.com/Tencent/Hunyuan3D-2/blob/main/hy3dgen/shapegen/models/autoencoders/model.py | |
| # Since the header on their VAE source file was a bit confusing we asked for permission to use this code from tencent under the GPL license used in ComfyUI. | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from typing import Union, Tuple, List, Callable, Optional | |
| import numpy as np | |
| from einops import repeat, rearrange | |
| from tqdm import tqdm | |
| import logging | |
| import comfy.ops | |
| ops = comfy.ops.disable_weight_init | |
| def generate_dense_grid_points( | |
| bbox_min: np.ndarray, | |
| bbox_max: np.ndarray, | |
| octree_resolution: int, | |
| indexing: str = "ij", | |
| ): | |
| length = bbox_max - bbox_min | |
| num_cells = octree_resolution | |
| x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32) | |
| y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32) | |
| z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32) | |
| [xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing) | |
| xyz = np.stack((xs, ys, zs), axis=-1) | |
| grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1] | |
| return xyz, grid_size, length | |
| class VanillaVolumeDecoder: | |
| def __call__( | |
| self, | |
| latents: torch.FloatTensor, | |
| geo_decoder: Callable, | |
| bounds: Union[Tuple[float], List[float], float] = 1.01, | |
| num_chunks: int = 10000, | |
| octree_resolution: int = None, | |
| enable_pbar: bool = True, | |
| **kwargs, | |
| ): | |
| device = latents.device | |
| dtype = latents.dtype | |
| batch_size = latents.shape[0] | |
| # 1. generate query points | |
| if isinstance(bounds, float): | |
| bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds] | |
| bbox_min, bbox_max = np.array(bounds[0:3]), np.array(bounds[3:6]) | |
| xyz_samples, grid_size, length = generate_dense_grid_points( | |
| bbox_min=bbox_min, | |
| bbox_max=bbox_max, | |
| octree_resolution=octree_resolution, | |
| indexing="ij" | |
| ) | |
| xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype).contiguous().reshape(-1, 3) | |
| # 2. latents to 3d volume | |
| batch_logits = [] | |
| for start in tqdm(range(0, xyz_samples.shape[0], num_chunks), desc="Volume Decoding", | |
| disable=not enable_pbar): | |
| chunk_queries = xyz_samples[start: start + num_chunks, :] | |
| chunk_queries = repeat(chunk_queries, "p c -> b p c", b=batch_size) | |
| logits = geo_decoder(queries=chunk_queries, latents=latents) | |
| batch_logits.append(logits) | |
| grid_logits = torch.cat(batch_logits, dim=1) | |
| grid_logits = grid_logits.view((batch_size, *grid_size)).float() | |
| return grid_logits | |
| class FourierEmbedder(nn.Module): | |
| """The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts | |
| each feature dimension of `x[..., i]` into: | |
| [ | |
| sin(x[..., i]), | |
| sin(f_1*x[..., i]), | |
| sin(f_2*x[..., i]), | |
| ... | |
| sin(f_N * x[..., i]), | |
| cos(x[..., i]), | |
| cos(f_1*x[..., i]), | |
| cos(f_2*x[..., i]), | |
| ... | |
| cos(f_N * x[..., i]), | |
| x[..., i] # only present if include_input is True. | |
| ], here f_i is the frequency. | |
| Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs]. | |
| If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...]; | |
| Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)]. | |
| Args: | |
| num_freqs (int): the number of frequencies, default is 6; | |
| logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...], | |
| otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)]; | |
| input_dim (int): the input dimension, default is 3; | |
| include_input (bool): include the input tensor or not, default is True. | |
| Attributes: | |
| frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...], | |
| otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1); | |
| out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1), | |
| otherwise, it is input_dim * num_freqs * 2. | |
| """ | |
| def __init__(self, | |
| num_freqs: int = 6, | |
| logspace: bool = True, | |
| input_dim: int = 3, | |
| include_input: bool = True, | |
| include_pi: bool = True) -> None: | |
| """The initialization""" | |
| super().__init__() | |
| if logspace: | |
| frequencies = 2.0 ** torch.arange( | |
| num_freqs, | |
| dtype=torch.float32 | |
| ) | |
| else: | |
| frequencies = torch.linspace( | |
| 1.0, | |
| 2.0 ** (num_freqs - 1), | |
| num_freqs, | |
| dtype=torch.float32 | |
| ) | |
| if include_pi: | |
| frequencies *= torch.pi | |
| self.register_buffer("frequencies", frequencies, persistent=False) | |
| self.include_input = include_input | |
| self.num_freqs = num_freqs | |
| self.out_dim = self.get_dims(input_dim) | |
| def get_dims(self, input_dim): | |
| temp = 1 if self.include_input or self.num_freqs == 0 else 0 | |
| out_dim = input_dim * (self.num_freqs * 2 + temp) | |
| return out_dim | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| """ Forward process. | |
| Args: | |
| x: tensor of shape [..., dim] | |
| Returns: | |
| embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)] | |
| where temp is 1 if include_input is True and 0 otherwise. | |
| """ | |
| if self.num_freqs > 0: | |
| embed = (x[..., None].contiguous() * self.frequencies.to(device=x.device, dtype=x.dtype)).view(*x.shape[:-1], -1) | |
| if self.include_input: | |
| return torch.cat((x, embed.sin(), embed.cos()), dim=-1) | |
| else: | |
| return torch.cat((embed.sin(), embed.cos()), dim=-1) | |
| else: | |
| return x | |
| class CrossAttentionProcessor: | |
| def __call__(self, attn, q, k, v): | |
| out = F.scaled_dot_product_attention(q, k, v) | |
| return out | |
| class DropPath(nn.Module): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
| """ | |
| def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True): | |
| super(DropPath, self).__init__() | |
| self.drop_prob = drop_prob | |
| self.scale_by_keep = scale_by_keep | |
| def forward(self, x): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
| This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
| the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
| See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
| changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
| 'survival rate' as the argument. | |
| """ | |
| if self.drop_prob == 0. or not self.training: | |
| return x | |
| keep_prob = 1 - self.drop_prob | |
| shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
| random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
| if keep_prob > 0.0 and self.scale_by_keep: | |
| random_tensor.div_(keep_prob) | |
| return x * random_tensor | |
| def extra_repr(self): | |
| return f'drop_prob={round(self.drop_prob, 3):0.3f}' | |
| class MLP(nn.Module): | |
| def __init__( | |
| self, *, | |
| width: int, | |
| expand_ratio: int = 4, | |
| output_width: int = None, | |
| drop_path_rate: float = 0.0 | |
| ): | |
| super().__init__() | |
| self.width = width | |
| self.c_fc = ops.Linear(width, width * expand_ratio) | |
| self.c_proj = ops.Linear(width * expand_ratio, output_width if output_width is not None else width) | |
| self.gelu = nn.GELU() | |
| self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
| def forward(self, x): | |
| return self.drop_path(self.c_proj(self.gelu(self.c_fc(x)))) | |
| class QKVMultiheadCrossAttention(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| heads: int, | |
| width=None, | |
| qk_norm=False, | |
| norm_layer=ops.LayerNorm | |
| ): | |
| super().__init__() | |
| self.heads = heads | |
| self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity() | |
| self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity() | |
| self.attn_processor = CrossAttentionProcessor() | |
| def forward(self, q, kv): | |
| _, n_ctx, _ = q.shape | |
| bs, n_data, width = kv.shape | |
| attn_ch = width // self.heads // 2 | |
| q = q.view(bs, n_ctx, self.heads, -1) | |
| kv = kv.view(bs, n_data, self.heads, -1) | |
| k, v = torch.split(kv, attn_ch, dim=-1) | |
| q = self.q_norm(q) | |
| k = self.k_norm(k) | |
| q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v)) | |
| out = self.attn_processor(self, q, k, v) | |
| out = out.transpose(1, 2).reshape(bs, n_ctx, -1) | |
| return out | |
| class MultiheadCrossAttention(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| width: int, | |
| heads: int, | |
| qkv_bias: bool = True, | |
| data_width: Optional[int] = None, | |
| norm_layer=ops.LayerNorm, | |
| qk_norm: bool = False, | |
| kv_cache: bool = False, | |
| ): | |
| super().__init__() | |
| self.width = width | |
| self.heads = heads | |
| self.data_width = width if data_width is None else data_width | |
| self.c_q = ops.Linear(width, width, bias=qkv_bias) | |
| self.c_kv = ops.Linear(self.data_width, width * 2, bias=qkv_bias) | |
| self.c_proj = ops.Linear(width, width) | |
| self.attention = QKVMultiheadCrossAttention( | |
| heads=heads, | |
| width=width, | |
| norm_layer=norm_layer, | |
| qk_norm=qk_norm | |
| ) | |
| self.kv_cache = kv_cache | |
| self.data = None | |
| def forward(self, x, data): | |
| x = self.c_q(x) | |
| if self.kv_cache: | |
| if self.data is None: | |
| self.data = self.c_kv(data) | |
| logging.info('Save kv cache,this should be called only once for one mesh') | |
| data = self.data | |
| else: | |
| data = self.c_kv(data) | |
| x = self.attention(x, data) | |
| x = self.c_proj(x) | |
| return x | |
| class ResidualCrossAttentionBlock(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| width: int, | |
| heads: int, | |
| mlp_expand_ratio: int = 4, | |
| data_width: Optional[int] = None, | |
| qkv_bias: bool = True, | |
| norm_layer=ops.LayerNorm, | |
| qk_norm: bool = False | |
| ): | |
| super().__init__() | |
| if data_width is None: | |
| data_width = width | |
| self.attn = MultiheadCrossAttention( | |
| width=width, | |
| heads=heads, | |
| data_width=data_width, | |
| qkv_bias=qkv_bias, | |
| norm_layer=norm_layer, | |
| qk_norm=qk_norm | |
| ) | |
| self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6) | |
| self.ln_2 = norm_layer(data_width, elementwise_affine=True, eps=1e-6) | |
| self.ln_3 = norm_layer(width, elementwise_affine=True, eps=1e-6) | |
| self.mlp = MLP(width=width, expand_ratio=mlp_expand_ratio) | |
| def forward(self, x: torch.Tensor, data: torch.Tensor): | |
| x = x + self.attn(self.ln_1(x), self.ln_2(data)) | |
| x = x + self.mlp(self.ln_3(x)) | |
| return x | |
| class QKVMultiheadAttention(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| heads: int, | |
| width=None, | |
| qk_norm=False, | |
| norm_layer=ops.LayerNorm | |
| ): | |
| super().__init__() | |
| self.heads = heads | |
| self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity() | |
| self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity() | |
| def forward(self, qkv): | |
| bs, n_ctx, width = qkv.shape | |
| attn_ch = width // self.heads // 3 | |
| qkv = qkv.view(bs, n_ctx, self.heads, -1) | |
| q, k, v = torch.split(qkv, attn_ch, dim=-1) | |
| q = self.q_norm(q) | |
| k = self.k_norm(k) | |
| q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v)) | |
| out = F.scaled_dot_product_attention(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1) | |
| return out | |
| class MultiheadAttention(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| width: int, | |
| heads: int, | |
| qkv_bias: bool, | |
| norm_layer=ops.LayerNorm, | |
| qk_norm: bool = False, | |
| drop_path_rate: float = 0.0 | |
| ): | |
| super().__init__() | |
| self.width = width | |
| self.heads = heads | |
| self.c_qkv = ops.Linear(width, width * 3, bias=qkv_bias) | |
| self.c_proj = ops.Linear(width, width) | |
| self.attention = QKVMultiheadAttention( | |
| heads=heads, | |
| width=width, | |
| norm_layer=norm_layer, | |
| qk_norm=qk_norm | |
| ) | |
| self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
| def forward(self, x): | |
| x = self.c_qkv(x) | |
| x = self.attention(x) | |
| x = self.drop_path(self.c_proj(x)) | |
| return x | |
| class ResidualAttentionBlock(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| width: int, | |
| heads: int, | |
| qkv_bias: bool = True, | |
| norm_layer=ops.LayerNorm, | |
| qk_norm: bool = False, | |
| drop_path_rate: float = 0.0, | |
| ): | |
| super().__init__() | |
| self.attn = MultiheadAttention( | |
| width=width, | |
| heads=heads, | |
| qkv_bias=qkv_bias, | |
| norm_layer=norm_layer, | |
| qk_norm=qk_norm, | |
| drop_path_rate=drop_path_rate | |
| ) | |
| self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6) | |
| self.mlp = MLP(width=width, drop_path_rate=drop_path_rate) | |
| self.ln_2 = norm_layer(width, elementwise_affine=True, eps=1e-6) | |
| def forward(self, x: torch.Tensor): | |
| x = x + self.attn(self.ln_1(x)) | |
| x = x + self.mlp(self.ln_2(x)) | |
| return x | |
| class Transformer(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| width: int, | |
| layers: int, | |
| heads: int, | |
| qkv_bias: bool = True, | |
| norm_layer=ops.LayerNorm, | |
| qk_norm: bool = False, | |
| drop_path_rate: float = 0.0 | |
| ): | |
| super().__init__() | |
| self.width = width | |
| self.layers = layers | |
| self.resblocks = nn.ModuleList( | |
| [ | |
| ResidualAttentionBlock( | |
| width=width, | |
| heads=heads, | |
| qkv_bias=qkv_bias, | |
| norm_layer=norm_layer, | |
| qk_norm=qk_norm, | |
| drop_path_rate=drop_path_rate | |
| ) | |
| for _ in range(layers) | |
| ] | |
| ) | |
| def forward(self, x: torch.Tensor): | |
| for block in self.resblocks: | |
| x = block(x) | |
| return x | |
| class CrossAttentionDecoder(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| out_channels: int, | |
| fourier_embedder: FourierEmbedder, | |
| width: int, | |
| heads: int, | |
| mlp_expand_ratio: int = 4, | |
| downsample_ratio: int = 1, | |
| enable_ln_post: bool = True, | |
| qkv_bias: bool = True, | |
| qk_norm: bool = False, | |
| label_type: str = "binary" | |
| ): | |
| super().__init__() | |
| self.enable_ln_post = enable_ln_post | |
| self.fourier_embedder = fourier_embedder | |
| self.downsample_ratio = downsample_ratio | |
| self.query_proj = ops.Linear(self.fourier_embedder.out_dim, width) | |
| if self.downsample_ratio != 1: | |
| self.latents_proj = ops.Linear(width * downsample_ratio, width) | |
| if self.enable_ln_post == False: | |
| qk_norm = False | |
| self.cross_attn_decoder = ResidualCrossAttentionBlock( | |
| width=width, | |
| mlp_expand_ratio=mlp_expand_ratio, | |
| heads=heads, | |
| qkv_bias=qkv_bias, | |
| qk_norm=qk_norm | |
| ) | |
| if self.enable_ln_post: | |
| self.ln_post = ops.LayerNorm(width) | |
| self.output_proj = ops.Linear(width, out_channels) | |
| self.label_type = label_type | |
| self.count = 0 | |
| def forward(self, queries=None, query_embeddings=None, latents=None): | |
| if query_embeddings is None: | |
| query_embeddings = self.query_proj(self.fourier_embedder(queries).to(latents.dtype)) | |
| self.count += query_embeddings.shape[1] | |
| if self.downsample_ratio != 1: | |
| latents = self.latents_proj(latents) | |
| x = self.cross_attn_decoder(query_embeddings, latents) | |
| if self.enable_ln_post: | |
| x = self.ln_post(x) | |
| occ = self.output_proj(x) | |
| return occ | |
| class ShapeVAE(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| embed_dim: int, | |
| width: int, | |
| heads: int, | |
| num_decoder_layers: int, | |
| geo_decoder_downsample_ratio: int = 1, | |
| geo_decoder_mlp_expand_ratio: int = 4, | |
| geo_decoder_ln_post: bool = True, | |
| num_freqs: int = 8, | |
| include_pi: bool = True, | |
| qkv_bias: bool = True, | |
| qk_norm: bool = False, | |
| label_type: str = "binary", | |
| drop_path_rate: float = 0.0, | |
| scale_factor: float = 1.0, | |
| ): | |
| super().__init__() | |
| self.geo_decoder_ln_post = geo_decoder_ln_post | |
| self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi) | |
| self.post_kl = ops.Linear(embed_dim, width) | |
| self.transformer = Transformer( | |
| width=width, | |
| layers=num_decoder_layers, | |
| heads=heads, | |
| qkv_bias=qkv_bias, | |
| qk_norm=qk_norm, | |
| drop_path_rate=drop_path_rate | |
| ) | |
| self.geo_decoder = CrossAttentionDecoder( | |
| fourier_embedder=self.fourier_embedder, | |
| out_channels=1, | |
| mlp_expand_ratio=geo_decoder_mlp_expand_ratio, | |
| downsample_ratio=geo_decoder_downsample_ratio, | |
| enable_ln_post=self.geo_decoder_ln_post, | |
| width=width // geo_decoder_downsample_ratio, | |
| heads=heads // geo_decoder_downsample_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_norm=qk_norm, | |
| label_type=label_type, | |
| ) | |
| self.volume_decoder = VanillaVolumeDecoder() | |
| self.scale_factor = scale_factor | |
| def decode(self, latents, **kwargs): | |
| latents = self.post_kl(latents.movedim(-2, -1)) | |
| latents = self.transformer(latents) | |
| bounds = kwargs.get("bounds", 1.01) | |
| num_chunks = kwargs.get("num_chunks", 8000) | |
| octree_resolution = kwargs.get("octree_resolution", 256) | |
| enable_pbar = kwargs.get("enable_pbar", True) | |
| grid_logits = self.volume_decoder(latents, self.geo_decoder, bounds=bounds, num_chunks=num_chunks, octree_resolution=octree_resolution, enable_pbar=enable_pbar) | |
| return grid_logits.movedim(-2, -1) | |
| def encode(self, x): | |
| return None | |