Spaces:
Running
on
Zero
Running
on
Zero
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from PIL import Image | |
| import math | |
| import comfy.utils | |
| import comfy.model_management | |
| class Blend: | |
| def __init__(self): | |
| pass | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "image1": ("IMAGE",), | |
| "image2": ("IMAGE",), | |
| "blend_factor": ("FLOAT", { | |
| "default": 0.5, | |
| "min": 0.0, | |
| "max": 1.0, | |
| "step": 0.01 | |
| }), | |
| "blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light", "difference"],), | |
| }, | |
| } | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "blend_images" | |
| CATEGORY = "image/postprocessing" | |
| def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str): | |
| image2 = image2.to(image1.device) | |
| if image1.shape != image2.shape: | |
| image2 = image2.permute(0, 3, 1, 2) | |
| image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center') | |
| image2 = image2.permute(0, 2, 3, 1) | |
| blended_image = self.blend_mode(image1, image2, blend_mode) | |
| blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor | |
| blended_image = torch.clamp(blended_image, 0, 1) | |
| return (blended_image,) | |
| def blend_mode(self, img1, img2, mode): | |
| if mode == "normal": | |
| return img2 | |
| elif mode == "multiply": | |
| return img1 * img2 | |
| elif mode == "screen": | |
| return 1 - (1 - img1) * (1 - img2) | |
| elif mode == "overlay": | |
| return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2)) | |
| elif mode == "soft_light": | |
| return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1)) | |
| elif mode == "difference": | |
| return img1 - img2 | |
| else: | |
| raise ValueError(f"Unsupported blend mode: {mode}") | |
| def g(self, x): | |
| return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x)) | |
| def gaussian_kernel(kernel_size: int, sigma: float, device=None): | |
| x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij") | |
| d = torch.sqrt(x * x + y * y) | |
| g = torch.exp(-(d * d) / (2.0 * sigma * sigma)) | |
| return g / g.sum() | |
| class Blur: | |
| def __init__(self): | |
| pass | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "image": ("IMAGE",), | |
| "blur_radius": ("INT", { | |
| "default": 1, | |
| "min": 1, | |
| "max": 31, | |
| "step": 1 | |
| }), | |
| "sigma": ("FLOAT", { | |
| "default": 1.0, | |
| "min": 0.1, | |
| "max": 10.0, | |
| "step": 0.1 | |
| }), | |
| }, | |
| } | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "blur" | |
| CATEGORY = "image/postprocessing" | |
| def blur(self, image: torch.Tensor, blur_radius: int, sigma: float): | |
| if blur_radius == 0: | |
| return (image,) | |
| image = image.to(comfy.model_management.get_torch_device()) | |
| batch_size, height, width, channels = image.shape | |
| kernel_size = blur_radius * 2 + 1 | |
| kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1) | |
| image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) | |
| padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect') | |
| blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius] | |
| blurred = blurred.permute(0, 2, 3, 1) | |
| return (blurred.to(comfy.model_management.intermediate_device()),) | |
| class Quantize: | |
| def __init__(self): | |
| pass | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "image": ("IMAGE",), | |
| "colors": ("INT", { | |
| "default": 256, | |
| "min": 1, | |
| "max": 256, | |
| "step": 1 | |
| }), | |
| "dither": (["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"],), | |
| }, | |
| } | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "quantize" | |
| CATEGORY = "image/postprocessing" | |
| def bayer(im, pal_im, order): | |
| def normalized_bayer_matrix(n): | |
| if n == 0: | |
| return np.zeros((1,1), "float32") | |
| else: | |
| q = 4 ** n | |
| m = q * normalized_bayer_matrix(n - 1) | |
| return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q | |
| num_colors = len(pal_im.getpalette()) // 3 | |
| spread = 2 * 256 / num_colors | |
| bayer_n = int(math.log2(order)) | |
| bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5) | |
| result = torch.from_numpy(np.array(im).astype(np.float32)) | |
| tw = math.ceil(result.shape[0] / bayer_matrix.shape[0]) | |
| th = math.ceil(result.shape[1] / bayer_matrix.shape[1]) | |
| tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1) | |
| result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255) | |
| result = result.to(dtype=torch.uint8) | |
| im = Image.fromarray(result.cpu().numpy()) | |
| im = im.quantize(palette=pal_im, dither=Image.Dither.NONE) | |
| return im | |
| def quantize(self, image: torch.Tensor, colors: int, dither: str): | |
| batch_size, height, width, _ = image.shape | |
| result = torch.zeros_like(image) | |
| for b in range(batch_size): | |
| im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB') | |
| pal_im = im.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836 | |
| if dither == "none": | |
| quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE) | |
| elif dither == "floyd-steinberg": | |
| quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG) | |
| elif dither.startswith("bayer"): | |
| order = int(dither.split('-')[-1]) | |
| quantized_image = Quantize.bayer(im, pal_im, order) | |
| quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255 | |
| result[b] = quantized_array | |
| return (result,) | |
| class Sharpen: | |
| def __init__(self): | |
| pass | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "image": ("IMAGE",), | |
| "sharpen_radius": ("INT", { | |
| "default": 1, | |
| "min": 1, | |
| "max": 31, | |
| "step": 1 | |
| }), | |
| "sigma": ("FLOAT", { | |
| "default": 1.0, | |
| "min": 0.1, | |
| "max": 10.0, | |
| "step": 0.01 | |
| }), | |
| "alpha": ("FLOAT", { | |
| "default": 1.0, | |
| "min": 0.0, | |
| "max": 5.0, | |
| "step": 0.01 | |
| }), | |
| }, | |
| } | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "sharpen" | |
| CATEGORY = "image/postprocessing" | |
| def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float): | |
| if sharpen_radius == 0: | |
| return (image,) | |
| batch_size, height, width, channels = image.shape | |
| image = image.to(comfy.model_management.get_torch_device()) | |
| kernel_size = sharpen_radius * 2 + 1 | |
| kernel = gaussian_kernel(kernel_size, sigma, device=image.device) * -(alpha*10) | |
| center = kernel_size // 2 | |
| kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0 | |
| kernel = kernel.repeat(channels, 1, 1).unsqueeze(1) | |
| tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) | |
| tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect') | |
| sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius] | |
| sharpened = sharpened.permute(0, 2, 3, 1) | |
| result = torch.clamp(sharpened, 0, 1) | |
| return (result.to(comfy.model_management.intermediate_device()),) | |
| class ImageScaleToTotalPixels: | |
| upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] | |
| crop_methods = ["disabled", "center"] | |
| def INPUT_TYPES(s): | |
| return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,), | |
| "megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}), | |
| }} | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "upscale" | |
| CATEGORY = "image/upscaling" | |
| def upscale(self, image, upscale_method, megapixels): | |
| samples = image.movedim(-1,1) | |
| total = int(megapixels * 1024 * 1024) | |
| scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2])) | |
| width = round(samples.shape[3] * scale_by) | |
| height = round(samples.shape[2] * scale_by) | |
| s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled") | |
| s = s.movedim(1,-1) | |
| return (s,) | |
| NODE_CLASS_MAPPINGS = { | |
| "ImageBlend": Blend, | |
| "ImageBlur": Blur, | |
| "ImageQuantize": Quantize, | |
| "ImageSharpen": Sharpen, | |
| "ImageScaleToTotalPixels": ImageScaleToTotalPixels, | |
| } | |