Spaces:
Sleeping
Sleeping
File size: 4,507 Bytes
52af9bb 5fc90f2 52af9bb 5fc90f2 52af9bb 5fc90f2 52af9bb 5fc90f2 52af9bb 5fc90f2 52af9bb 5fc90f2 52af9bb 5fc90f2 52af9bb 5fc90f2 52af9bb 5fc90f2 e0d93b8 52af9bb e0d93b8 52af9bb e0d93b8 5fc90f2 52af9bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# app.py
from Bio import PDB
from transformers import AutoTokenizer, AutoModelForCausalLM
from rdkit import Chem
import py3Dmol
import re
import io
import selfies as sf
import torch
import time
import gradio as gr
# ุฅุนุฏุงุฏ ุงูุนุดูุงุฆูุฉ
torch.manual_seed(int(time.time()))
if torch.cuda.is_available():
torch.cuda.manual_seed_all(int(time.time()))
# ุชุญู
ูู ุงููู
ูุฐุฌ
model_name = "ncfrey/ChemGPT-1.2B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
def load_pdb(file_obj):
parser = PDB.PDBParser(QUIET=True)
structure = parser.get_structure('protein', file_obj)
return structure
def get_protein_3d_html(pdb_str):
view = py3Dmol.view(width=600, height=400)
view.addModel(pdb_str, "pdb")
view.setStyle({"cartoon": {"color": "spectrum"}})
view.zoomTo()
return view._make_html()
def clean_and_decode_selfies(raw_output):
tokens = re.findall(r'\[[^\[\]]+\]', raw_output)
valid_tokens = [t for t in tokens if all(x not in t for x in ['Branch', 'Ring', 'expl'])]
cleaned_selfies = ''.join(valid_tokens)
try:
smiles = sf.decoder(cleaned_selfies)
mol = Chem.MolFromSmiles(smiles)
if mol:
return Chem.MolToSmiles(mol)
except:
return None
def generate_multiple_valid_smiles(prompt, n=10, max_length=100):
valid_smiles = set()
tries = 0
while len(valid_smiles) < n and tries < n * 5:
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
**inputs,
max_length=max_length,
do_sample=True,
temperature=1.0,
top_k=100,
pad_token_id=tokenizer.eos_token_id
)
selfies_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
smiles = clean_and_decode_selfies(selfies_output)
if smiles:
valid_smiles.add(smiles)
tries += 1
return list(valid_smiles)
def generate_from_pdb(pdb_file):
try:
if isinstance(pdb_file, (str, bytes)):
pdb_str = pdb_file if isinstance(pdb_file, str) else pdb_file.decode('utf-8', errors='ignore')
else:
pdb_bytes = pdb_file.read()
pdb_str = pdb_bytes.decode('utf-8', errors='ignore')
if len(pdb_str.strip()) == 0:
return "โ The file is empty or invalid.", None, None
pdb_file_io = io.StringIO(pdb_str)
try:
load_pdb(pdb_file_io)
except Exception as e:
return f"โ Error parsing the PDB file:\n{str(e)}", None, None
html_3d = get_protein_3d_html(pdb_str)
prompt = "Generate a molecule in SELFIES that binds to the mutated KRAS protein"
smiles_list = generate_multiple_valid_smiles(prompt, n=10)
if not smiles_list:
return "โ No valid SMILES generated.", html_3d, None
smiles_txt = "\n".join(smiles_list)
smiles_file_path = "/tmp/generated_smiles.txt"
with open(smiles_file_path, "w") as f:
f.write(smiles_txt)
return "โ
Molecules generated successfully.", html_3d, smiles_file_path
except Exception as e:
return f"โ An unexpected error occurred:\n{str(e)}", None, None
# CSS to beautify the interface
css = """
body {
background-color: #f0f9ff;
font-family: 'Segoe UI', sans-serif;
}
h1 {
color: #003d66;
text-align: center;
font-size: 32px;
}
.gr-box {
border: 1px solid #cce7ff;
background-color: #ffffff;
border-radius: 15px;
padding: 20px;
box-shadow: 0 2px 8px rgba(0, 128, 255, 0.1);
}
button {
background-color: #007acc !important;
color: white !important;
font-weight: bold;
border-radius: 10px !important;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("""
<h1>๐ฌ Drug-like Molecule Generation from PDB using ChemGPT</h1>
<p>๐งช Upload a PDB file containing mutations in the KRAS protein. The system will generate suitable SMILES drug candidates.</p>
""")
with gr.Row():
pdb_input = gr.File(label="๐ Upload PDB File")
run_btn = gr.Button("๐ Generate Molecules")
status = gr.Textbox(label="๐ข Status")
view3d = gr.HTML(label="๐งฌ 3D Structure View")
file_output = gr.File(label="๐ Download SMILES File")
run_btn.click(
fn=generate_from_pdb,
inputs=pdb_input,
outputs=[status, view3d, file_output]
)
demo.launch(share=True)
|