Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,6 +14,7 @@ torch.manual_seed(int(time.time()))
|
|
14 |
if torch.cuda.is_available():
|
15 |
torch.cuda.manual_seed_all(int(time.time()))
|
16 |
|
|
|
17 |
model_name = "ncfrey/ChemGPT-1.2B"
|
18 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
19 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
@@ -64,7 +65,9 @@ def generate_multiple_valid_smiles(prompt, n=10, max_length=100):
|
|
64 |
|
65 |
def generate_from_pdb(pdb_file):
|
66 |
try:
|
67 |
-
|
|
|
|
|
68 |
if len(pdb_str.strip()) == 0:
|
69 |
return "❌ الملف فارغ أو غير صالح", None, None
|
70 |
|
@@ -75,6 +78,7 @@ def generate_from_pdb(pdb_file):
|
|
75 |
return f"❌ خطأ أثناء تحليل ملف PDB:\n{str(e)}", None, None
|
76 |
|
77 |
html_3d = get_protein_3d_html(pdb_str)
|
|
|
78 |
prompt = "Generate a molecule in SELFIES that binds to the mutated KRAS protein"
|
79 |
smiles_list = generate_multiple_valid_smiles(prompt, n=10)
|
80 |
|
@@ -87,6 +91,7 @@ def generate_from_pdb(pdb_file):
|
|
87 |
f.write(smiles_txt)
|
88 |
|
89 |
return "✅ تم توليد المركبات بنجاح", html_3d, smiles_file_path
|
|
|
90 |
except Exception as e:
|
91 |
return f"❌ حدث خطأ:\n{str(e)}", None, None
|
92 |
|
@@ -98,12 +103,18 @@ h1 {color: #004d66; text-align: center;}
|
|
98 |
with gr.Blocks(css=css) as demo:
|
99 |
gr.Markdown("<h1>🔬 Drug-like Molecule Generation from PDB using ChemGPT</h1>")
|
100 |
gr.Markdown("🧪 Upload a PDB file containing mutations in the KRAS protein. The system will generate suitable SMILES drug candidates.")
|
|
|
101 |
with gr.Row():
|
102 |
pdb_input = gr.File(label="📁 Upload PDB File")
|
103 |
-
run_btn = gr.Button("🚀 Generate
|
104 |
status = gr.Textbox(label="📢 Status")
|
105 |
-
view3d = gr.HTML(label="🧬 3D Structure
|
106 |
file_output = gr.File(label="📄 Download SMILES File")
|
107 |
-
run_btn.click(
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
|
|
|
|
14 |
if torch.cuda.is_available():
|
15 |
torch.cuda.manual_seed_all(int(time.time()))
|
16 |
|
17 |
+
# تحميل النموذج
|
18 |
model_name = "ncfrey/ChemGPT-1.2B"
|
19 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
65 |
|
66 |
def generate_from_pdb(pdb_file):
|
67 |
try:
|
68 |
+
with open(pdb_file.name, 'r', encoding='utf-8', errors='ignore') as f:
|
69 |
+
pdb_str = f.read()
|
70 |
+
|
71 |
if len(pdb_str.strip()) == 0:
|
72 |
return "❌ الملف فارغ أو غير صالح", None, None
|
73 |
|
|
|
78 |
return f"❌ خطأ أثناء تحليل ملف PDB:\n{str(e)}", None, None
|
79 |
|
80 |
html_3d = get_protein_3d_html(pdb_str)
|
81 |
+
|
82 |
prompt = "Generate a molecule in SELFIES that binds to the mutated KRAS protein"
|
83 |
smiles_list = generate_multiple_valid_smiles(prompt, n=10)
|
84 |
|
|
|
91 |
f.write(smiles_txt)
|
92 |
|
93 |
return "✅ تم توليد المركبات بنجاح", html_3d, smiles_file_path
|
94 |
+
|
95 |
except Exception as e:
|
96 |
return f"❌ حدث خطأ:\n{str(e)}", None, None
|
97 |
|
|
|
103 |
with gr.Blocks(css=css) as demo:
|
104 |
gr.Markdown("<h1>🔬 Drug-like Molecule Generation from PDB using ChemGPT</h1>")
|
105 |
gr.Markdown("🧪 Upload a PDB file containing mutations in the KRAS protein. The system will generate suitable SMILES drug candidates.")
|
106 |
+
|
107 |
with gr.Row():
|
108 |
pdb_input = gr.File(label="📁 Upload PDB File")
|
109 |
+
run_btn = gr.Button("🚀 Generate Molecules")
|
110 |
status = gr.Textbox(label="📢 Status")
|
111 |
+
view3d = gr.HTML(label="🧬 3D Structure View")
|
112 |
file_output = gr.File(label="📄 Download SMILES File")
|
113 |
+
run_btn.click(
|
114 |
+
fn=generate_from_pdb,
|
115 |
+
inputs=pdb_input,
|
116 |
+
outputs=[status, view3d, file_output]
|
117 |
+
)
|
118 |
|
119 |
+
if __name__ == "__main__":
|
120 |
+
demo.launch()
|