Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,21 +9,19 @@ from transformers import pipeline, AutoModel, AutoTokenizer
|
|
| 9 |
import PyPDF2
|
| 10 |
import gradio as gr
|
| 11 |
import openai
|
| 12 |
-
|
| 13 |
-
|
|
|
|
| 14 |
|
| 15 |
# تحميل وتفعيل الأدوات المطلوبة
|
| 16 |
nltk.download('punkt')
|
| 17 |
|
| 18 |
# التحقق من توفر GPU واستخدامه
|
| 19 |
-
device = 0
|
| 20 |
|
| 21 |
# تحميل نماذج التحليل اللغوي
|
| 22 |
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
|
| 23 |
|
| 24 |
-
# تحميل نموذج التعرف على الكيانات في camel_tools
|
| 25 |
-
ner = NERecognizer.pretrained()
|
| 26 |
-
|
| 27 |
# تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT
|
| 28 |
arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic")
|
| 29 |
arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic")
|
|
@@ -37,22 +35,14 @@ arabic_electra_model = AutoModel.from_pretrained("aubmindlab/araelectra-base-dis
|
|
| 37 |
arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02")
|
| 38 |
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02")
|
| 39 |
|
| 40 |
-
# إعداد OpenAI API
|
| 41 |
-
openai.api_key = os.getenv("sk-proj-62TDbO5KABSdkZaFPPD4T3BlbkFJkhqOYpHhL6OucTzNdWSU")
|
| 42 |
-
|
| 43 |
-
# إعداد farm-haystack
|
| 44 |
-
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
|
| 45 |
-
|
| 46 |
-
# إعداد paddlenlp
|
| 47 |
-
ner_task = Taskflow("ner")
|
| 48 |
-
|
| 49 |
# دالة لتحليل النص باستخدام camel_tools
|
| 50 |
def camel_ner_analysis(text):
|
|
|
|
| 51 |
tokens = simple_word_tokenize(text)
|
| 52 |
entities = ner.predict(tokens)
|
| 53 |
entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
|
| 54 |
for token, tag in zip(tokens, entities):
|
| 55 |
-
|
| 56 |
entity_dict[tag].append((token, tag))
|
| 57 |
return entity_dict
|
| 58 |
|
|
@@ -71,7 +61,7 @@ def nltk_extract_quotes(text):
|
|
| 71 |
quotes = []
|
| 72 |
sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
|
| 73 |
for sentence in sentences:
|
| 74 |
-
|
| 75 |
quotes.append(sentence)
|
| 76 |
return quotes
|
| 77 |
|
|
@@ -82,10 +72,10 @@ def count_tokens(text):
|
|
| 82 |
|
| 83 |
# دالة لاستخراج النص من ملفات PDF
|
| 84 |
def extract_pdf_text(file_path):
|
| 85 |
-
|
| 86 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 87 |
text = ""
|
| 88 |
-
|
| 89 |
page = pdf_reader.pages[page_num]
|
| 90 |
text += page.extract_text()
|
| 91 |
return text
|
|
@@ -93,7 +83,7 @@ def extract_pdf_text(file_path):
|
|
| 93 |
# دالة لاستخراج المشاهد من النص
|
| 94 |
def extract_scenes(text):
|
| 95 |
scenes = re.split(r'داخلي|خارجي', text)
|
| 96 |
-
scenes = [scene.strip() for scene in scenes
|
| 97 |
return scenes
|
| 98 |
|
| 99 |
# دالة لاستخراج تفاصيل المشهد (المكان والوقت)
|
|
@@ -102,9 +92,9 @@ def extract_scene_details(scene):
|
|
| 102 |
location_match = re.search(r'(داخلي|خارجي)', scene)
|
| 103 |
time_match = re.search(r'(ليلاً|نهاراً|شروق|غروب)', scene)
|
| 104 |
|
| 105 |
-
|
| 106 |
details['location'] = location_match.group()
|
| 107 |
-
|
| 108 |
details['time'] = time_match.group()
|
| 109 |
|
| 110 |
return details
|
|
@@ -135,11 +125,11 @@ def analyze_and_complete(file_paths):
|
|
| 135 |
results = []
|
| 136 |
output_directory = os.getenv("SPACE_DIR", "/app/output")
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
text = extract_pdf_text(file_path)
|
| 141 |
else:
|
| 142 |
-
|
| 143 |
text = file.read()
|
| 144 |
|
| 145 |
filename_prefix = os.path.splitext(os.path.basename(file_path))[0]
|
|
@@ -155,47 +145,47 @@ def analyze_and_complete(file_paths):
|
|
| 155 |
character_frequency = extract_character_frequency(camel_entities)
|
| 156 |
dialogues = extract_dialogues(text)
|
| 157 |
|
| 158 |
-
scene_details = [extract_scene_details(scene)
|
| 159 |
|
| 160 |
# حفظ النتائج إلى ملفات
|
| 161 |
-
|
| 162 |
file.write(str(camel_entities))
|
| 163 |
|
| 164 |
-
|
| 165 |
file.write(str(sentiments))
|
| 166 |
|
| 167 |
-
|
| 168 |
file.write("\n".join(sentences))
|
| 169 |
|
| 170 |
-
|
| 171 |
file.write("\n".join(quotes))
|
| 172 |
|
| 173 |
-
|
| 174 |
file.write(str(token_count))
|
| 175 |
|
| 176 |
-
|
| 177 |
file.write("\n".join(scenes))
|
| 178 |
|
| 179 |
-
|
| 180 |
file.write(str(scene_details))
|
| 181 |
|
| 182 |
-
|
| 183 |
file.write(str(ages))
|
| 184 |
|
| 185 |
-
|
| 186 |
file.write(str(character_descriptions))
|
| 187 |
|
| 188 |
-
|
| 189 |
file.write(str(character_frequency))
|
| 190 |
|
| 191 |
-
|
| 192 |
file.write(str(dialogues))
|
| 193 |
|
| 194 |
results.append((str(camel_entities), str(sentiments), "\n".join(sentences), "\n".join(quotes), str(token_count), "\n".join(scenes), str(scene_details), str(ages), str(character_descriptions), str(character_frequency), str(dialogues)))
|
| 195 |
|
| 196 |
return results
|
| 197 |
|
| 198 |
-
|
| 199 |
interface = gr.Interface(
|
| 200 |
fn=analyze_and_complete,
|
| 201 |
inputs=gr.File(file_count="multiple", type="filepath"),
|
|
|
|
| 9 |
import PyPDF2
|
| 10 |
import gradio as gr
|
| 11 |
import openai
|
| 12 |
+
|
| 13 |
+
# تعيين التوكن الخاص بـ OpenAI
|
| 14 |
+
openai.api_key = "sk-proj-62TDbO5KABSdkZaFPPD4T3BlbkFJkhqOYpHhL6OucTzNdWSU"
|
| 15 |
|
| 16 |
# تحميل وتفعيل الأدوات المطلوبة
|
| 17 |
nltk.download('punkt')
|
| 18 |
|
| 19 |
# التحقق من توفر GPU واستخدامه
|
| 20 |
+
device = 0 إذا torch.cuda.is_available() else -1
|
| 21 |
|
| 22 |
# تحميل نماذج التحليل اللغوي
|
| 23 |
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
|
| 24 |
|
|
|
|
|
|
|
|
|
|
| 25 |
# تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT
|
| 26 |
arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic")
|
| 27 |
arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic")
|
|
|
|
| 35 |
arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02")
|
| 36 |
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02")
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
# دالة لتحليل النص باستخدام camel_tools
|
| 39 |
def camel_ner_analysis(text):
|
| 40 |
+
ner = NERecognizer.pretrained()
|
| 41 |
tokens = simple_word_tokenize(text)
|
| 42 |
entities = ner.predict(tokens)
|
| 43 |
entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
|
| 44 |
for token, tag in zip(tokens, entities):
|
| 45 |
+
إذا tag in entity_dict:
|
| 46 |
entity_dict[tag].append((token, tag))
|
| 47 |
return entity_dict
|
| 48 |
|
|
|
|
| 61 |
quotes = []
|
| 62 |
sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
|
| 63 |
for sentence in sentences:
|
| 64 |
+
إذا '"' in sentence أو '«' in sentence أو '»' in sentence:
|
| 65 |
quotes.append(sentence)
|
| 66 |
return quotes
|
| 67 |
|
|
|
|
| 72 |
|
| 73 |
# دالة لاستخراج النص من ملفات PDF
|
| 74 |
def extract_pdf_text(file_path):
|
| 75 |
+
مع open(file_path, "rb") كما pdf_file:
|
| 76 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 77 |
text = ""
|
| 78 |
+
لكل page_num in range(len(pdf_reader.pages)):
|
| 79 |
page = pdf_reader.pages[page_num]
|
| 80 |
text += page.extract_text()
|
| 81 |
return text
|
|
|
|
| 83 |
# دالة لاستخراج المشاهد من النص
|
| 84 |
def extract_scenes(text):
|
| 85 |
scenes = re.split(r'داخلي|خارجي', text)
|
| 86 |
+
scenes = [scene.strip() for scene in scenes إذا scene.strip()]
|
| 87 |
return scenes
|
| 88 |
|
| 89 |
# دالة لاستخراج تفاصيل المشهد (المكان والوقت)
|
|
|
|
| 92 |
location_match = re.search(r'(داخلي|خارجي)', scene)
|
| 93 |
time_match = re.search(r'(ليلاً|نهاراً|شروق|غروب)', scene)
|
| 94 |
|
| 95 |
+
إذا location_match:
|
| 96 |
details['location'] = location_match.group()
|
| 97 |
+
إذا time_match:
|
| 98 |
details['time'] = time_match.group()
|
| 99 |
|
| 100 |
return details
|
|
|
|
| 125 |
results = []
|
| 126 |
output_directory = os.getenv("SPACE_DIR", "/app/output")
|
| 127 |
|
| 128 |
+
لكل file_path in file_paths:
|
| 129 |
+
إذا file_path.endswith(".pdf"):
|
| 130 |
text = extract_pdf_text(file_path)
|
| 131 |
else:
|
| 132 |
+
مع open(file_path, "r", encoding="utf-8") كما file:
|
| 133 |
text = file.read()
|
| 134 |
|
| 135 |
filename_prefix = os.path.splitext(os.path.basename(file_path))[0]
|
|
|
|
| 145 |
character_frequency = extract_character_frequency(camel_entities)
|
| 146 |
dialogues = extract_dialogues(text)
|
| 147 |
|
| 148 |
+
scene_details = [extract_scene_details(scene) لكل scene in scenes]
|
| 149 |
|
| 150 |
# حفظ النتائج إلى ملفات
|
| 151 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_entities.txt"), "w", encoding="utf-8") كما file:
|
| 152 |
file.write(str(camel_entities))
|
| 153 |
|
| 154 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_sentiments.txt"), "w", encoding="utf-8") كما file:
|
| 155 |
file.write(str(sentiments))
|
| 156 |
|
| 157 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_sentences.txt"), "w", encoding="utf-8") كما file:
|
| 158 |
file.write("\n".join(sentences))
|
| 159 |
|
| 160 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_quotes.txt"), "w", encoding="utf-8") كما file:
|
| 161 |
file.write("\n".join(quotes))
|
| 162 |
|
| 163 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_token_count.txt"), "w", encoding="utf-8") كما file:
|
| 164 |
file.write(str(token_count))
|
| 165 |
|
| 166 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_scenes.txt"), "w", encoding="utf-8") كما file:
|
| 167 |
file.write("\n".join(scenes))
|
| 168 |
|
| 169 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_scene_details.txt"), "w", encoding="utf-8") كما file:
|
| 170 |
file.write(str(scene_details))
|
| 171 |
|
| 172 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_ages.txt"), "w", encoding="utf-8") كما file:
|
| 173 |
file.write(str(ages))
|
| 174 |
|
| 175 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_character_descriptions.txt"), "w", encoding="utf-8") كما file:
|
| 176 |
file.write(str(character_descriptions))
|
| 177 |
|
| 178 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_character_frequency.txt"), "w", encoding="utf-8") كما file:
|
| 179 |
file.write(str(character_frequency))
|
| 180 |
|
| 181 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_dialogues.txt"), "w", encoding="utf-8") كما file:
|
| 182 |
file.write(str(dialogues))
|
| 183 |
|
| 184 |
results.append((str(camel_entities), str(sentiments), "\n".join(sentences), "\n".join(quotes), str(token_count), "\n".join(scenes), str(scene_details), str(ages), str(character_descriptions), str(character_frequency), str(dialogues)))
|
| 185 |
|
| 186 |
return results
|
| 187 |
|
| 188 |
+
## تعريف واجهة Gradio
|
| 189 |
interface = gr.Interface(
|
| 190 |
fn=analyze_and_complete,
|
| 191 |
inputs=gr.File(file_count="multiple", type="filepath"),
|