Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,75 @@
|
|
1 |
import os
|
2 |
-
import
|
|
|
|
|
|
|
3 |
import nltk
|
4 |
import torch
|
5 |
-
from
|
|
|
6 |
import PyPDF2
|
7 |
import gradio as gr
|
8 |
|
9 |
# تحميل وتفعيل الأدوات المطلوبة
|
10 |
-
spacy.cli.download("en_core_web_sm")
|
11 |
-
nlp = spacy.load("en_core_web_sm")
|
12 |
nltk.download('punkt')
|
13 |
|
14 |
# التحقق من توفر GPU واستخدامه
|
15 |
device = 0 if torch.cuda.is_available() else -1
|
|
|
|
|
16 |
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def nltk_extract_sentences(text):
|
24 |
-
sentences = nltk.tokenize.sent_tokenize(text)
|
25 |
return sentences
|
26 |
|
|
|
27 |
def nltk_extract_quotes(text):
|
28 |
quotes = []
|
29 |
-
sentences = nltk.tokenize.sent_tokenize(text)
|
30 |
for sentence in sentences:
|
31 |
-
if '"' in sentence:
|
32 |
quotes.append(sentence)
|
33 |
return quotes
|
34 |
|
|
|
35 |
def count_tokens(text):
|
36 |
-
tokens =
|
37 |
return len(tokens)
|
38 |
|
|
|
39 |
def extract_pdf_text(file_path):
|
40 |
with open(file_path, "rb") as pdf_file:
|
41 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
@@ -45,9 +79,50 @@ def extract_pdf_text(file_path):
|
|
45 |
text += page.extract_text()
|
46 |
return text
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def analyze_and_complete(file_paths):
|
49 |
results = []
|
50 |
-
output_directory = "/Volumes/CLOCKWORK T/clockworkspace/first pro"
|
51 |
|
52 |
for file_path in file_paths:
|
53 |
if file_path.endswith(".pdf"):
|
@@ -58,14 +133,25 @@ def analyze_and_complete(file_paths):
|
|
58 |
|
59 |
filename_prefix = os.path.splitext(os.path.basename(file_path))[0]
|
60 |
|
61 |
-
|
|
|
62 |
sentences = nltk_extract_sentences(text)
|
63 |
quotes = nltk_extract_quotes(text)
|
64 |
token_count = count_tokens(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
# حفظ النتائج إلى ملفات
|
67 |
-
with open(os.path.join(output_directory, f"{filename_prefix}
|
68 |
-
file.write(str(
|
|
|
|
|
|
|
69 |
|
70 |
with open(os.path.join(output_directory, f"{filename_prefix}_sentences.txt"), "w", encoding="utf-8") as file:
|
71 |
file.write("\n".join(sentences))
|
@@ -75,8 +161,26 @@ def analyze_and_complete(file_paths):
|
|
75 |
|
76 |
with open(os.path.join(output_directory, f"{filename_prefix}_token_count.txt"), "w", encoding="utf-8") as file:
|
77 |
file.write(str(token_count))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
results.append((str(
|
80 |
|
81 |
return results
|
82 |
|
|
|
1 |
import os
|
2 |
+
import re
|
3 |
+
import camel_tools
|
4 |
+
from camel_tools.tokenizers.word import simple_word_tokenize
|
5 |
+
from camel_tools.ner import NERecognizer
|
6 |
import nltk
|
7 |
import torch
|
8 |
+
from collections import Counter
|
9 |
+
from transformers import pipeline, AutoModel, AutoTokenizer
|
10 |
import PyPDF2
|
11 |
import gradio as gr
|
12 |
|
13 |
# تحميل وتفعيل الأدوات المطلوبة
|
|
|
|
|
14 |
nltk.download('punkt')
|
15 |
|
16 |
# التحقق من توفر GPU واستخدامه
|
17 |
device = 0 if torch.cuda.is_available() else -1
|
18 |
+
|
19 |
+
# تحميل نماذج التحليل اللغوي
|
20 |
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
|
21 |
|
22 |
+
# تحميل نموذج التعرف على الكيانات في camel_tools
|
23 |
+
ner = NERecognizer.pretrained()
|
24 |
+
|
25 |
+
# تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT
|
26 |
+
arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic")
|
27 |
+
arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic")
|
28 |
+
|
29 |
+
arabic_gpt2_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-base")
|
30 |
+
arabic_gpt2_model = AutoModel.from_pretrained("aubmindlab/aragpt2-base")
|
31 |
+
|
32 |
+
arabic_electra_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/araelectra-base-discriminator")
|
33 |
+
arabic_electra_model = AutoModel.from_pretrained("aubmindlab/araelectra-base-discriminator")
|
34 |
+
|
35 |
+
arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02")
|
36 |
+
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02")
|
37 |
+
|
38 |
+
# دالة لتحليل النص باستخدام camel_tools
|
39 |
+
def camel_ner_analysis(text):
|
40 |
+
tokens = simple_word_tokenize(text)
|
41 |
+
entities = ner.predict(tokens)
|
42 |
+
entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
|
43 |
+
for token, tag in zip(tokens, entities):
|
44 |
+
if tag in entity_dict:
|
45 |
+
entity_dict[tag].append((token, tag))
|
46 |
+
return entity_dict
|
47 |
|
48 |
+
# دالة لتحليل المشاعر
|
49 |
+
def analyze_sentiments(text):
|
50 |
+
sentiments = analyzer(text)
|
51 |
+
return sentiments
|
52 |
+
|
53 |
+
# دالة لتجزئة النص إلى جمل
|
54 |
def nltk_extract_sentences(text):
|
55 |
+
sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
|
56 |
return sentences
|
57 |
|
58 |
+
# دالة لاستخراج الاقتباسات من النص
|
59 |
def nltk_extract_quotes(text):
|
60 |
quotes = []
|
61 |
+
sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
|
62 |
for sentence in sentences:
|
63 |
+
if '"' in sentence or '«' في sentence or '»' في sentence:
|
64 |
quotes.append(sentence)
|
65 |
return quotes
|
66 |
|
67 |
+
# دالة لعد الرموز في النص
|
68 |
def count_tokens(text):
|
69 |
+
tokens = simple_word_tokenize(text)
|
70 |
return len(tokens)
|
71 |
|
72 |
+
# دالة لاستخراج النص من ملفات PDF
|
73 |
def extract_pdf_text(file_path):
|
74 |
with open(file_path, "rb") as pdf_file:
|
75 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
|
|
79 |
text += page.extract_text()
|
80 |
return text
|
81 |
|
82 |
+
# دالة لاستخراج المشاهد من النص
|
83 |
+
def extract_scenes(text):
|
84 |
+
scenes = re.split(r'داخلي|خارجي', text)
|
85 |
+
scenes = [scene.strip() for scene in scenes if scene.strip()]
|
86 |
+
return scenes
|
87 |
+
|
88 |
+
# دالة لاستخراج تفاصيل المشهد (المكان والوقت)
|
89 |
+
def extract_scene_details(scene):
|
90 |
+
details = {}
|
91 |
+
location_match = re.search(r'(داخلي|خارجي)', scene)
|
92 |
+
time_match = re.search(r'(ليلاً|نهاراً|شروق|غروب)', scene)
|
93 |
+
|
94 |
+
if location_match:
|
95 |
+
details['location'] = location_match.group()
|
96 |
+
if time_match:
|
97 |
+
details['time'] = time_match.group()
|
98 |
+
|
99 |
+
return details
|
100 |
+
|
101 |
+
# دالة لاستخراج أعمار الشخصيات
|
102 |
+
def extract_ages(text):
|
103 |
+
ages = re.findall(r'\b(\d{1,2})\s*(?:عام|سنة|سنوات)\s*(?:من العمر|عمره|عمرها)', text)
|
104 |
+
return ages
|
105 |
+
|
106 |
+
# دالة لاستخراج وصف الشخصيات
|
107 |
+
def extract_character_descriptions(text):
|
108 |
+
descriptions = re.findall(r'شخصية\s*(.*?)\s*:\s*وصف\s*(.*?)\s*(?:\.|،)', text, re.DOTALL)
|
109 |
+
return descriptions
|
110 |
+
|
111 |
+
# دالة لاستخراج تكرار الشخصيات
|
112 |
+
def extract_character_frequency(entities):
|
113 |
+
persons = [ent[0] for ent in entities['PERSON']]
|
114 |
+
frequency = Counter(persons)
|
115 |
+
return frequency
|
116 |
+
|
117 |
+
# دالة لاستخراج الحوارات وتحديد المتحدثين
|
118 |
+
def extract_dialogues(text):
|
119 |
+
dialogues = re.findall(r'(.*?)(?:\s*:\s*)(.*?)(?=\n|$)', text, re.DOTALL)
|
120 |
+
return dialogues
|
121 |
+
|
122 |
+
# دالة لتحليل النصوص واستخراج المعلومات وحفظ النتائج
|
123 |
def analyze_and_complete(file_paths):
|
124 |
results = []
|
125 |
+
output_directory = os.getenv("SPACE_DIR", "/Volumes/CLOCKWORK T/clockworkspace/first pro")
|
126 |
|
127 |
for file_path in file_paths:
|
128 |
if file_path.endswith(".pdf"):
|
|
|
133 |
|
134 |
filename_prefix = os.path.splitext(os.path.basename(file_path))[0]
|
135 |
|
136 |
+
camel_entities = camel_ner_analysis(text)
|
137 |
+
sentiments = analyze_sentiments(text)
|
138 |
sentences = nltk_extract_sentences(text)
|
139 |
quotes = nltk_extract_quotes(text)
|
140 |
token_count = count_tokens(text)
|
141 |
+
scenes = extract_scenes(text)
|
142 |
+
ages = extract_ages(text)
|
143 |
+
character_descriptions = extract_character_descriptions(text)
|
144 |
+
character_frequency = extract_character_frequency(camel_entities)
|
145 |
+
dialogues = extract_dialogues(text)
|
146 |
+
|
147 |
+
scene_details = [extract_scene_details(scene) for scene in scenes]
|
148 |
|
149 |
# حفظ النتائج إلى ملفات
|
150 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_entities.txt"), "w", encoding="utf-8") as file:
|
151 |
+
file.write(str(camel_entities))
|
152 |
+
|
153 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_sentiments.txt"), "w", encoding="utf-8") as file:
|
154 |
+
file.write(str(sentiments))
|
155 |
|
156 |
with open(os.path.join(output_directory, f"{filename_prefix}_sentences.txt"), "w", encoding="utf-8") as file:
|
157 |
file.write("\n".join(sentences))
|
|
|
161 |
|
162 |
with open(os.path.join(output_directory, f"{filename_prefix}_token_count.txt"), "w", encoding="utf-8") as file:
|
163 |
file.write(str(token_count))
|
164 |
+
|
165 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_scenes.txt"), "w", encoding="utf-8") as file:
|
166 |
+
file.write("\n".join(scenes))
|
167 |
+
|
168 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_scene_details.txt"), "w", encoding="utf-8") as file:
|
169 |
+
file.write(str(scene_details))
|
170 |
+
|
171 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_ages.txt"), "w", encoding="utf-8") as file:
|
172 |
+
file.write(str(ages))
|
173 |
+
|
174 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_character_descriptions.txt"), "w", encoding="utf-8") as file:
|
175 |
+
file.write(str(character_descriptions))
|
176 |
+
|
177 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_character_frequency.txt"), "w", encoding="utf-8") as file:
|
178 |
+
file.write(str(character_frequency))
|
179 |
+
|
180 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_dialogues.txt"), "w", encoding="utf-8") as file:
|
181 |
+
file.write(str(dialogues))
|
182 |
|
183 |
+
results.append((str(camel_entities), str(sentiments), "\n".join(sentences), "\n".join(quotes), str(token_count), "\n".join(scenes), str(scene_details), str(ages), str(character_descriptions), str(character_frequency), str(dialogues)))
|
184 |
|
185 |
return results
|
186 |
|