File size: 32,362 Bytes
86d4cbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 |
import copy
import glob
import inspect
import json
import os
import random
import sys
import re
from typing import Dict, List, Any, Callable, Tuple, TextIO
from argparse import ArgumentParser
import black
from comfyui_to_python_utils import (
import_custom_nodes,
find_path,
add_comfyui_directory_to_sys_path,
add_extra_model_paths,
get_value_at_index
)
add_comfyui_directory_to_sys_path()
from nodes import NODE_CLASS_MAPPINGS
class FileHandler:
"""Handles reading and writing files.
This class provides methods to read JSON data from an input file and write code to an output file.
"""
@staticmethod
def read_json_file(file_path: str | TextIO, encoding: str = "utf-8") -> dict:
"""
Reads a JSON file and returns its contents as a dictionary.
Args:
file_path (str): The path to the JSON file.
Returns:
dict: The contents of the JSON file as a dictionary.
Raises:
FileNotFoundError: If the file is not found, it lists all JSON files in the directory of the file path.
ValueError: If the file is not a valid JSON.
"""
if hasattr(file_path, "read"):
return json.load(file_path)
with open(file_path, "r", encoding="utf-8") as file:
data = json.load(file)
return data
@staticmethod
def write_code_to_file(file_path: str | TextIO, code: str) -> None:
"""Write the specified code to a Python file.
Args:
file_path (str): The path to the Python file.
code (str): The code to write to the file.
Returns:
None
"""
if isinstance(file_path, str):
# Extract directory from the filename
directory = os.path.dirname(file_path)
# If the directory does not exist, create it
if directory and not os.path.exists(directory):
os.makedirs(directory)
# Save the code to a .py file
with open(file_path, "w", encoding="utf-8") as file:
file.write(code)
else:
file_path.write(code)
class LoadOrderDeterminer:
"""Determine the load order of each key in the provided dictionary.
This class places the nodes without node dependencies first, then ensures that any node whose
result is used in another node will be added to the list in the order it should be executed.
Attributes:
data (Dict): The dictionary for which to determine the load order.
node_class_mappings (Dict): Mappings of node classes.
"""
def __init__(self, data: Dict, node_class_mappings: Dict):
"""Initialize the LoadOrderDeterminer with the given data and node class mappings.
Args:
data (Dict): The dictionary for which to determine the load order.
node_class_mappings (Dict): Mappings of node classes.
"""
self.data = data
self.node_class_mappings = node_class_mappings
self.visited = {}
self.load_order = []
self.is_special_function = False
self.is_loader_function = False
def determine_load_order(self) -> List[Tuple[str, Dict, bool, bool]]:
"""Determine the load order for the given data.
Returns:
List[Tuple[str, Dict, bool, bool]]: A list of tuples representing the load order.
"""
self._load_special_functions_first()
self.is_special_function = False
self.is_loader_function = False
for key in self.data:
if key not in self.visited:
self._dfs(key)
return self.load_order
def _dfs(self, key: str) -> None:
"""Depth-First Search function to determine the load order.
Args:
key (str): The key from which to start the DFS.
Returns:
None
"""
# Mark the node as visited.
self.visited[key] = True
inputs = self.data[key]["inputs"]
# Loop over each input key.
for input_key, val in inputs.items():
# If the value is a list and the first item in the list has not been visited yet,
# then recursively apply DFS on the dependency.
if isinstance(val, list) and val[0] not in self.visited:
self._dfs(val[0])
# Add the key and its corresponding data to the load order list.
self.load_order.append((key, self.data[key], self.is_special_function, self.is_loader_function))
def _load_special_functions_first(self) -> None:
"""Load functions without dependencies, loaders, and encoders first.
Returns:
None
"""
# Iterate over each key in the data to check for loader keys.
for key in self.data:
class_def = self.node_class_mappings[self.data[key]["class_type"]]()
# Check if the class is a loader class or meets specific conditions.
self.is_special_function = (
class_def.CATEGORY == "loaders"
# or class_def.FUNCTION in ["encode"]
or not any(
isinstance(val, list) for val in self.data[key]["inputs"].values()
)
) and class_def.CATEGORY != "FramerComfy"
# Track if this is specifically a loader function
self.is_loader_function = class_def.CATEGORY == "loaders"
if self.is_special_function:
# If the key has not been visited, perform a DFS from that key.
if key not in self.visited:
self._dfs(key)
class CodeGenerator:
"""Generates Python code for a workflow based on the load order.
Attributes:
node_class_mappings (Dict): Mappings of node classes.
base_node_class_mappings (Dict): Base mappings of node classes.
"""
def __init__(self, node_class_mappings: Dict, base_node_class_mappings: Dict, workflow_models: List = None):
"""Initialize the CodeGenerator with given node class mappings.
Args:
node_class_mappings (Dict): Mappings of node classes.
base_node_class_mappings (Dict): Base mappings of node classes.
workflow_models (List): List of models to download from huggingface.
"""
self.node_class_mappings = node_class_mappings
self.base_node_class_mappings = base_node_class_mappings
self.workflow_models = workflow_models or []
self.input_nodes = {} # Store input nodes and their variable names
self.output_nodes = [] # Store output node variable names
def collect_framer_nodes(self, load_order: List) -> Tuple[Dict, List]:
"""Collect FramerComfy input and output nodes from the load order.
Args:
load_order (List): List of tuples containing node information.
Returns:
Tuple[Dict, List]: Dictionary of input parameters and list of output variables.
"""
for idx, data, _, _ in load_order:
class_type = data["class_type"]
if class_type.startswith("FramerComfy") and "Input" in class_type:
# Extract input parameter name and default value from the node
class_def = self.node_class_mappings[class_type]()
param_name = data.get("inputs", {}).get("name", f"param_{idx}")
# default_value = data.get("inputs", {}).get("default_value", None)
default_value = None
param_type = class_def.__class__.__name__.replace("FramerComfyInput", "").lower()
self.input_nodes[param_name] = {
"var_name": f"{self.clean_variable_name(class_type)}_{idx}",
"default": default_value,
"type": param_type
}
elif class_type.startswith("FramerComfy") and "Save" in class_type:
var_name = f"{self.clean_variable_name(class_type)}_{idx}"
self.output_nodes.append({
"var_name": var_name,
"type": class_type
})
def generate_function_signature(self) -> str:
"""Generate the function signature based on collected input nodes.
Returns:
str: The function signature string.
"""
params = []
for param_name, info in self.input_nodes.items():
default = f"={info['default']}" if info['default'] is not None else ""
params.append(f"{param_name}{default}")
return f"@spaces.GPU\ndef run_workflow({', '.join(params)}) -> Tuple[Any, ...]:"
def generate_workflow(
self,
load_order: List,
) -> str:
"""Generate the execution code based on the load order.
Args:
load_order (List): A list of tuples representing the load order.
Returns:
str: Generated execution code as a string.
"""
# Create the necessary data structures to hold imports and generated code
import_statements, executed_variables = set(["NODE_CLASS_MAPPINGS"]), {}
loader_code, loader_execution_code, special_functions_code, main_code = [], [], [], []
# This dictionary will store the names of the objects that we have already initialized
initialized_objects = {}
# Collect FramerComfy input and output nodes
self.collect_framer_nodes(load_order)
# Create a mapping of FramerComfy input node IDs to their parameter names
input_node_mapping = {}
for param_name, info in self.input_nodes.items():
for idx, data, _, _ in load_order:
if f"{self.clean_variable_name(data['class_type'])}_{idx}" == info['var_name']:
input_node_mapping[idx] = param_name
break
custom_nodes = False
# Loop over each dictionary in the load order list
for idx, data, is_special_function, is_loader_function in load_order:
# Skip FramerComfy input nodes entirely
if data["class_type"].startswith("FramerComfy") and "Input" in data["class_type"]:
continue
# Generate class definition and inputs from the data
inputs, class_type = data["inputs"], data["class_type"]
input_types = self.node_class_mappings[class_type].INPUT_TYPES()
class_def = self.node_class_mappings[class_type]()
# If required inputs are not present, skip the node as it will break the code if passed through to the script
missing_required_variable = False
if "required" in input_types.keys():
for required in input_types["required"]:
if required not in inputs.keys():
missing_required_variable = True
if missing_required_variable:
continue
# If the class hasn't been initialized yet, initialize it and generate the import statements
if class_type not in initialized_objects:
# No need to use preview image nodes since we are executing the script in a terminal
if class_type == "PreviewImage":
continue
class_type, import_statement, class_code = self.get_class_info(
class_type
)
initialized_objects[class_type] = self.clean_variable_name(class_type)
if class_type in self.base_node_class_mappings.keys():
import_statements.add(import_statement)
if class_type not in self.base_node_class_mappings.keys():
custom_nodes = True
special_functions_code.append(class_code)
# Get all possible parameters for class_def
class_def_params = self.get_function_parameters(
getattr(class_def, class_def.FUNCTION)
)
no_params = class_def_params is None
# Remove any keyword arguments from **inputs if they are not in class_def_params
inputs = {
key: value
for key, value in inputs.items()
if no_params or key in class_def_params
}
# Deal with hidden variables
if (
"hidden" in input_types.keys()
and "unique_id" in input_types["hidden"].keys()
):
inputs["unique_id"] = random.randint(1, 2**64)
elif class_def_params is not None:
if "unique_id" in class_def_params:
inputs["unique_id"] = random.randint(1, 2**64)
# Create executed variable and generate code
executed_variables[idx] = f"{self.clean_variable_name(class_type)}_{idx}"
inputs = self.update_inputs(inputs, executed_variables, input_node_mapping)
if is_loader_function:
loader_execution_code.append(
self.create_function_call_code(
initialized_objects[class_type],
class_def.FUNCTION,
executed_variables[idx],
True, # Always unindented since it's outside main
**inputs,
)
)
elif is_special_function:
special_functions_code.append(
self.create_function_call_code(
initialized_objects[class_type],
class_def.FUNCTION,
executed_variables[idx],
is_special_function,
**inputs,
)
)
else:
main_code.append(
self.create_function_call_code(
initialized_objects[class_type],
class_def.FUNCTION,
executed_variables[idx],
is_special_function,
**inputs,
)
)
return self.assemble_python_code(
import_statements,
loader_code,
loader_execution_code,
special_functions_code,
main_code,
custom_nodes,
)
def create_function_call_code(
self,
obj_name: str,
func: str,
variable_name: str,
is_special_function: bool,
**kwargs,
) -> str:
"""Generate Python code for a function call.
Args:
obj_name (str): The name of the initialized object.
func (str): The function to be called.
variable_name (str): The name of the variable that the function result should be assigned to.
is_special_function (bool): Determines the code indentation.
**kwargs: The keyword arguments for the function.
Returns:
str: The generated Python code.
"""
args = ", ".join(self.format_arg(key, value) for key, value in kwargs.items())
# Generate the Python code
code = f"{variable_name} = {obj_name}.{func}({args})\n"
# If the code contains dependencies and is not a loader or encoder, indent the code because it will be placed inside
# of a for loop
if not is_special_function:
code = f"\t{code}"
return code
def format_arg(self, key: str, value: any) -> str:
"""Formats arguments based on key and value.
Args:
key (str): Argument key.
value (any): Argument value.
Returns:
str: Formatted argument as a string.
"""
if key == "noise_seed" or key == "seed":
return f"{key}=random.randint(1, 2**64)"
elif isinstance(value, str):
# Check if this value is one of our input parameters
if value in self.input_nodes:
return f"{key}={value}"
value = value.replace("\n", "\\n").replace('"', "'")
return f'{key}="{value}"'
elif isinstance(value, dict) and "variable_name" in value:
return f'{key}={value["variable_name"]}'
return f"{key}={value}"
def assemble_python_code(
self,
import_statements: set,
loader_code: List[str],
loader_execution_code: List[str],
special_functions_code: List[str],
main_code: List[str],
custom_nodes=False,
) -> str:
"""Generates the final code string.
Args:
import_statements (set): A set of unique import statements.
loader_code (List[str]): A list of loader functions code strings.
loader_execution_code (List[str]): A list of loader function execution code strings.
special_functions_code (List[str]): A list of special functions code strings.
main_code (List[str]): A list of code strings.
custom_nodes (bool): Whether to include custom nodes in the code.
Returns:
str: Generated final code as a string.
"""
# Get the source code of the utils functions as a string
func_strings = []
for func in [
get_value_at_index,
find_path,
add_comfyui_directory_to_sys_path,
add_extra_model_paths
]:
func_strings.append(f"\n{inspect.getsource(func)}")
# Generate model download code if we have workflow_models
model_download_code = []
if self.workflow_models:
for model in self.workflow_models:
model_download_code.append(
f'hf_hub_download(repo_id="{model["repo_id"]}", filename="{model["file_name"]}", local_dir="{model["model_local_path"]}", token=hf_token)'
)
model_download_code = ["\n# Download required models from huggingface"] + ['hf_token = os.environ.get("HF_TOKEN")'] + model_download_code + [""]
# Define static import statements required for the script
static_imports = (
[
"import os",
"import random",
"import sys",
"from typing import Sequence, Mapping, Any, Union, Tuple",
"import torch",
"from PIL import Image",
"import spaces",
"import gradio as gr",
"from huggingface_hub import hf_hub_download",
"from comfy import model_management",
]
+ model_download_code
+ func_strings
+ ["\n\nadd_comfyui_directory_to_sys_path()\nadd_extra_model_paths()\n"]
)
# Check if custom nodes should be included
if custom_nodes:
static_imports.append(f"\n{inspect.getsource(import_custom_nodes)}\n")
custom_nodes = "import_custom_nodes()\n"
else:
custom_nodes = ""
# Create import statements for node classes
imports_code = [
f"from nodes import {', '.join([class_name for class_name in import_statements])}\n"
+ f"{custom_nodes}"
]
# Place loader class initialization first
loader_init = "\n".join(loader_code) + "\n" if loader_code else ""
# Place loader execution code after initialization
loader_execution = "\n".join(loader_execution_code) + "\n" if loader_execution_code else ""
# Extract variable names from loader execution code to build model_loaders list
model_vars = []
if loader_execution_code:
for line in loader_execution_code:
if "=" in line:
var_name = line.split("=")[0].strip()
model_vars.append(var_name)
# Add model management code if we have loaders
if model_vars:
model_management_code = f"\nmodel_loaders = [{', '.join(model_vars)}]\n\n"
model_management_code += "model_management.load_models_gpu([\n"
model_management_code += " loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] for loader in model_loaders\n"
model_management_code += "])\n\n"
else:
model_management_code = ""
# Place other special functions after loaders
initialization_code = "\n".join(special_functions_code) + "\n" if special_functions_code else ""
# Generate the workflow function
workflow_code = []
# Add main workflow code
workflow_code.extend([f"\twith torch.inference_mode():", f"\t\t" + "\n\t\t".join(main_code)])
# Add return statement for outputs
if self.output_nodes:
# Process each output node
output_vars = []
for output in self.output_nodes:
var_name = output["var_name"]
if "SaveImage" in output["type"]:
# For image outputs, extract the path
path_var = f"{var_name}_path"
workflow_code.append(f"\t{path_var} = \"output/\" + {var_name}['ui']['images'][0]['filename']")
output_vars.append(path_var)
else:
output_vars.append(var_name)
# Generate return statement
if len(output_vars) == 1:
workflow_code.append(f"\treturn {output_vars[0]}")
else:
workflow_code.append(f"\treturn ({', '.join(output_vars)})")
else:
workflow_code.append("\treturn None")
# Generate Gradio components
gradio_components = []
input_components = []
output_components = []
# Create output components first (outside the block)
output_declarations = []
for output in self.output_nodes:
var_name = output["var_name"]
output_name = var_name.replace("framercomfysave", "").replace("node_", "")
if "SaveImage" in output["type"]:
output_declarations.append(
f"{output_name}_output = gr.Image(label=\"{output.get('label', 'Generated ' + output_name.title())}\")"
)
output_components.append(f"{output_name}_output")
# Generate Gradio app code
gradio_code = [
"# Create Gradio interface",
*output_declarations,
"",
"with gr.Blocks() as app:",
"\twith gr.Row():",
"\t\twith gr.Column():"
]
# Add input components inside the block
input_declarations = []
for param_name, info in self.input_nodes.items():
if info["type"] == "stringnode":
input_declarations.append(
f"\t\t\t{param_name}_input = gr.Textbox("
f"label=\"{info.get('label', param_name.title())}\", "
f"value=\"{info['default']}\" if \"{info['default']}\" else None, "
f"placeholder=f\"Enter {param_name} here...\")"
)
input_components.append(f"{param_name}_input")
elif info["type"] == "image":
input_declarations.append(
f"\t\t\t{param_name}_input = gr.Image("
f"label=\"{info.get('label', param_name.title())}\", "
f"type=\"filepath\")"
)
input_components.append(f"{param_name}_input")
elif info["type"] == "float" or info["type"] == "integer":
min_val = f", minimum={info['min']}" if info.get('min') is not None else ""
max_val = f", maximum={info['max']}" if info.get('max') is not None else ""
step = f", step={info['step']}" if info.get('step') is not None else ""
input_declarations.append(
f"\t\t\t{param_name}_input = gr.{'Number' if info['type'] == 'float' else 'Slider'}("
f"label=\"{info.get('label', param_name.title())}\""
f"{min_val}{max_val}{step}, "
f"value={info['default'] if info['default'] is not None else 'None'})"
)
input_components.append(f"{param_name}_input")
gradio_code.extend([
*input_declarations,
"\t\t\tgenerate_btn = gr.Button(\"Generate\")",
"\t\twith gr.Column():",
*[f"\t\t\t{comp}.render()" for comp in output_components],
"\tgenerate_btn.click(",
"\t\tfn=run_workflow,",
f"\t\tinputs=[{', '.join(input_components)}],",
f"\t\toutputs=[{', '.join(output_components)}]",
"\t)",
"",
'if __name__ == "__main__":',
"\tapp.launch(share=True)"
])
# Concatenate all parts to form the final code
final_code = "\n".join(
static_imports
# + model_download_code
+ imports_code
+ ["", initialization_code, loader_init, loader_execution, model_management_code,
self.generate_function_signature(), "\n".join(workflow_code),
"", "\n".join(gradio_code)]
)
# Format the final code according to PEP 8 using the Black library
final_code = black.format_str(final_code, mode=black.Mode())
return final_code
def get_class_info(self, class_type: str) -> Tuple[str, str, str]:
"""Generates and returns necessary information about class type.
Args:
class_type (str): Class type.
Returns:
Tuple[str, str, str]: Updated class type, import statement string, class initialization code.
"""
import_statement = class_type
variable_name = self.clean_variable_name(class_type)
if class_type in self.base_node_class_mappings.keys():
class_code = f"{variable_name} = {class_type.strip()}()"
else:
class_code = f'{variable_name} = NODE_CLASS_MAPPINGS["{class_type}"]()'
return class_type, import_statement, class_code
@staticmethod
def clean_variable_name(class_type: str) -> str:
"""
Remove any characters from variable name that could cause errors running the Python script.
Args:
class_type (str): Class type.
Returns:
str: Cleaned variable name with no special characters or spaces
"""
# Convert to lowercase and replace spaces with underscores
clean_name = class_type.lower().strip().replace("-", "_").replace(" ", "_")
# Remove characters that are not letters, numbers, or underscores
clean_name = re.sub(r"[^a-z0-9_]", "", clean_name)
# Ensure that it doesn't start with a number
if clean_name[0].isdigit():
clean_name = "_" + clean_name
return clean_name
def get_function_parameters(self, func: Callable) -> List:
"""Get the names of a function's parameters.
Args:
func (Callable): The function whose parameters we want to inspect.
Returns:
List: A list containing the names of the function's parameters.
"""
signature = inspect.signature(func)
parameters = {
name: param.default if param.default != param.empty else None
for name, param in signature.parameters.items()
}
catch_all = any(
param.kind == inspect.Parameter.VAR_KEYWORD
for param in signature.parameters.values()
)
return list(parameters.keys()) if not catch_all else None
def update_inputs(self, inputs: Dict, executed_variables: Dict, input_node_mapping: Dict) -> Dict:
"""Update inputs based on the executed variables and input node mapping.
Args:
inputs (Dict): Inputs dictionary to update.
executed_variables (Dict): Dictionary storing executed variable names.
input_node_mapping (Dict): Mapping of input node IDs to parameter names.
Returns:
Dict: Updated inputs dictionary.
"""
for key in inputs.keys():
if isinstance(inputs[key], list):
node_id = inputs[key][0]
if node_id in input_node_mapping:
# Directly use the parameter name instead of get_value_at_index
inputs[key] = input_node_mapping[node_id]
elif node_id in executed_variables:
inputs[key] = {
"variable_name": f"get_value_at_index({executed_variables[node_id]}, {inputs[key][1]})"
}
return inputs
class ComfyUItoPython:
"""Main workflow to generate Python code from a workflow_api.json file.
Attributes:
input_file (str): Path to the input JSON file.
output_file (str): Path to the output Python file.
node_class_mappings (Dict): Mappings of node classes.
base_node_class_mappings (Dict): Base mappings of node classes.
"""
def __init__(
self,
workflow: str = "",
input_file: str = "",
workflow_models: str | List = "",
output_file: str | TextIO = "",
node_class_mappings: Dict = NODE_CLASS_MAPPINGS,
needs_init_custom_nodes: bool = False,
):
"""Initialize the ComfyUItoPython class with the given parameters. Exactly one of workflow or input_file must be specified.
Args:
workflow (str): The workflow's JSON.
input_file (str): Path to the input JSON file.
workflow_models (str | List): JSON string or list containing models to download.
output_file (str | TextIO): Path to the output file or a file-like object.
node_class_mappings (Dict): Mappings of node classes. Defaults to NODE_CLASS_MAPPINGS.
needs_init_custom_nodes (bool): Whether to initialize custom nodes. Defaults to False.
"""
if input_file and workflow:
raise ValueError("Can't provide both input_file and workflow")
elif not input_file and not workflow:
raise ValueError("Needs input_file or workflow")
if not output_file:
raise ValueError("Needs output_file")
self.workflow = workflow
self.input_file = input_file
self.output_file = output_file
self.node_class_mappings = node_class_mappings
self.needs_init_custom_nodes = needs_init_custom_nodes
# Handle workflow_models that can be either a JSON string or a list
if isinstance(workflow_models, str):
self.workflow_models = json.loads(workflow_models) if workflow_models else []
else:
self.workflow_models = workflow_models or []
self.base_node_class_mappings = copy.deepcopy(self.node_class_mappings)
# self.execute()
def execute(self):
"""Execute the main workflow to generate Python code.
Returns:
None
"""
# Step 1: Import all custom nodes if we need to
if self.needs_init_custom_nodes:
import_custom_nodes()
else:
# If they're already imported, we don't know which nodes are custom nodes, so we need to import all of them
self.base_node_class_mappings = {}
# Step 2: Read JSON data from the input file
if self.input_file:
data = FileHandler.read_json_file(self.input_file)
else:
data = json.loads(self.workflow)
# Step 3: Determine the load order
load_order_determiner = LoadOrderDeterminer(data, self.node_class_mappings)
load_order = load_order_determiner.determine_load_order()
# Step 4: Generate the workflow code
code_generator = CodeGenerator(self.node_class_mappings, self.base_node_class_mappings, self.workflow_models)
generated_code = code_generator.generate_workflow(load_order)
# Step 5: Write the generated code to a file
FileHandler.write_code_to_file(self.output_file, generated_code)
return generated_code
|