|
import torch |
|
|
|
|
|
def optimized_scale(positive, negative): |
|
positive_flat = positive.reshape(positive.shape[0], -1) |
|
negative_flat = negative.reshape(negative.shape[0], -1) |
|
|
|
|
|
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True) |
|
|
|
|
|
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8 |
|
|
|
|
|
st_star = dot_product / squared_norm |
|
|
|
return st_star.reshape([positive.shape[0]] + [1] * (positive.ndim - 1)) |
|
|
|
class CFGZeroStar: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"model": ("MODEL",), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
RETURN_NAMES = ("patched_model",) |
|
FUNCTION = "patch" |
|
CATEGORY = "advanced/guidance" |
|
|
|
def patch(self, model): |
|
m = model.clone() |
|
def cfg_zero_star(args): |
|
guidance_scale = args['cond_scale'] |
|
x = args['input'] |
|
cond_p = args['cond_denoised'] |
|
uncond_p = args['uncond_denoised'] |
|
out = args["denoised"] |
|
alpha = optimized_scale(x - cond_p, x - uncond_p) |
|
|
|
return out + uncond_p * (alpha - 1.0) + guidance_scale * uncond_p * (1.0 - alpha) |
|
m.set_model_sampler_post_cfg_function(cfg_zero_star) |
|
return (m, ) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"CFGZeroStar": CFGZeroStar |
|
} |
|
|