|
import nodes |
|
import node_helpers |
|
import torch |
|
import comfy.model_management |
|
|
|
|
|
class CLIPTextEncodeHunyuanDiT: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"clip": ("CLIP", ), |
|
"bert": ("STRING", {"multiline": True, "dynamicPrompts": True}), |
|
"mt5xl": ("STRING", {"multiline": True, "dynamicPrompts": True}), |
|
}} |
|
RETURN_TYPES = ("CONDITIONING",) |
|
FUNCTION = "encode" |
|
|
|
CATEGORY = "advanced/conditioning" |
|
|
|
def encode(self, clip, bert, mt5xl): |
|
tokens = clip.tokenize(bert) |
|
tokens["mt5xl"] = clip.tokenize(mt5xl)["mt5xl"] |
|
|
|
return (clip.encode_from_tokens_scheduled(tokens), ) |
|
|
|
class EmptyHunyuanLatentVideo: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "width": ("INT", {"default": 848, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), |
|
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), |
|
"length": ("INT", {"default": 25, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "generate" |
|
|
|
CATEGORY = "latent/video" |
|
|
|
def generate(self, width, height, length, batch_size=1): |
|
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) |
|
return ({"samples":latent}, ) |
|
|
|
PROMPT_TEMPLATE_ENCODE_VIDEO_I2V = ( |
|
"<|start_header_id|>system<|end_header_id|>\n\n<image>\nDescribe the video by detailing the following aspects according to the reference image: " |
|
"1. The main content and theme of the video." |
|
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects." |
|
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects." |
|
"4. background environment, light, style and atmosphere." |
|
"5. camera angles, movements, and transitions used in the video:<|eot_id|>\n\n" |
|
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\n" |
|
) |
|
|
|
class TextEncodeHunyuanVideo_ImageToVideo: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"clip": ("CLIP", ), |
|
"clip_vision_output": ("CLIP_VISION_OUTPUT", ), |
|
"prompt": ("STRING", {"multiline": True, "dynamicPrompts": True}), |
|
"image_interleave": ("INT", {"default": 2, "min": 1, "max": 512, "tooltip": "How much the image influences things vs the text prompt. Higher number means more influence from the text prompt."}), |
|
}} |
|
RETURN_TYPES = ("CONDITIONING",) |
|
FUNCTION = "encode" |
|
|
|
CATEGORY = "advanced/conditioning" |
|
|
|
def encode(self, clip, clip_vision_output, prompt, image_interleave): |
|
tokens = clip.tokenize(prompt, llama_template=PROMPT_TEMPLATE_ENCODE_VIDEO_I2V, image_embeds=clip_vision_output.mm_projected, image_interleave=image_interleave) |
|
return (clip.encode_from_tokens_scheduled(tokens), ) |
|
|
|
class HunyuanImageToVideo: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"positive": ("CONDITIONING", ), |
|
"vae": ("VAE", ), |
|
"width": ("INT", {"default": 848, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), |
|
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), |
|
"length": ("INT", {"default": 53, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), |
|
"guidance_type": (["v1 (concat)", "v2 (replace)"], ) |
|
}, |
|
"optional": {"start_image": ("IMAGE", ), |
|
}} |
|
|
|
RETURN_TYPES = ("CONDITIONING", "LATENT") |
|
RETURN_NAMES = ("positive", "latent") |
|
FUNCTION = "encode" |
|
|
|
CATEGORY = "conditioning/video_models" |
|
|
|
def encode(self, positive, vae, width, height, length, batch_size, guidance_type, start_image=None): |
|
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) |
|
out_latent = {} |
|
|
|
if start_image is not None: |
|
start_image = comfy.utils.common_upscale(start_image[:length, :, :, :3].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) |
|
|
|
concat_latent_image = vae.encode(start_image) |
|
mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) |
|
mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0 |
|
|
|
if guidance_type == "v1 (concat)": |
|
cond = {"concat_latent_image": concat_latent_image, "concat_mask": mask} |
|
else: |
|
cond = {'guiding_frame_index': 0} |
|
latent[:, :, :concat_latent_image.shape[2]] = concat_latent_image |
|
out_latent["noise_mask"] = mask |
|
|
|
positive = node_helpers.conditioning_set_values(positive, cond) |
|
|
|
out_latent["samples"] = latent |
|
return (positive, out_latent) |
|
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"CLIPTextEncodeHunyuanDiT": CLIPTextEncodeHunyuanDiT, |
|
"TextEncodeHunyuanVideo_ImageToVideo": TextEncodeHunyuanVideo_ImageToVideo, |
|
"EmptyHunyuanLatentVideo": EmptyHunyuanLatentVideo, |
|
"HunyuanImageToVideo": HunyuanImageToVideo, |
|
} |
|
|