|
import torch |
|
import comfy.model_management |
|
|
|
from kornia.morphology import dilation, erosion, opening, closing, gradient, top_hat, bottom_hat |
|
import kornia.color |
|
|
|
|
|
class Morphology: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"image": ("IMAGE",), |
|
"operation": (["erode", "dilate", "open", "close", "gradient", "bottom_hat", "top_hat"],), |
|
"kernel_size": ("INT", {"default": 3, "min": 3, "max": 999, "step": 1}), |
|
}} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "process" |
|
|
|
CATEGORY = "image/postprocessing" |
|
|
|
def process(self, image, operation, kernel_size): |
|
device = comfy.model_management.get_torch_device() |
|
kernel = torch.ones(kernel_size, kernel_size, device=device) |
|
image_k = image.to(device).movedim(-1, 1) |
|
if operation == "erode": |
|
output = erosion(image_k, kernel) |
|
elif operation == "dilate": |
|
output = dilation(image_k, kernel) |
|
elif operation == "open": |
|
output = opening(image_k, kernel) |
|
elif operation == "close": |
|
output = closing(image_k, kernel) |
|
elif operation == "gradient": |
|
output = gradient(image_k, kernel) |
|
elif operation == "top_hat": |
|
output = top_hat(image_k, kernel) |
|
elif operation == "bottom_hat": |
|
output = bottom_hat(image_k, kernel) |
|
else: |
|
raise ValueError(f"Invalid operation {operation} for morphology. Must be one of 'erode', 'dilate', 'open', 'close', 'gradient', 'tophat', 'bottomhat'") |
|
img_out = output.to(comfy.model_management.intermediate_device()).movedim(1, -1) |
|
return (img_out,) |
|
|
|
|
|
class ImageRGBToYUV: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "image": ("IMAGE",), |
|
}} |
|
|
|
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE") |
|
RETURN_NAMES = ("Y", "U", "V") |
|
FUNCTION = "execute" |
|
|
|
CATEGORY = "image/batch" |
|
|
|
def execute(self, image): |
|
out = kornia.color.rgb_to_ycbcr(image.movedim(-1, 1)).movedim(1, -1) |
|
return (out[..., 0:1].expand_as(image), out[..., 1:2].expand_as(image), out[..., 2:3].expand_as(image)) |
|
|
|
class ImageYUVToRGB: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"Y": ("IMAGE",), |
|
"U": ("IMAGE",), |
|
"V": ("IMAGE",), |
|
}} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
|
|
CATEGORY = "image/batch" |
|
|
|
def execute(self, Y, U, V): |
|
image = torch.cat([torch.mean(Y, dim=-1, keepdim=True), torch.mean(U, dim=-1, keepdim=True), torch.mean(V, dim=-1, keepdim=True)], dim=-1) |
|
out = kornia.color.ycbcr_to_rgb(image.movedim(-1, 1)).movedim(1, -1) |
|
return (out,) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"Morphology": Morphology, |
|
"ImageRGBToYUV": ImageRGBToYUV, |
|
"ImageYUVToRGB": ImageYUVToRGB, |
|
} |
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"Morphology": "ImageMorphology", |
|
} |
|
|