Update app.py
Browse files
app.py
CHANGED
@@ -2,35 +2,35 @@ import streamlit as st
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
from peft import PeftModel
|
4 |
|
5 |
-
# Load the base model and
|
6 |
@st.cache_resource
|
7 |
def load_model():
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
return model, tokenizer
|
12 |
|
13 |
model, tokenizer = load_model()
|
14 |
|
15 |
-
# Streamlit
|
16 |
st.title("Natural-Coder-3B-Instruct-V1 Model Interaction")
|
17 |
|
18 |
-
# Text input for user prompt
|
19 |
user_input = st.text_area("Enter your prompt here:", height=150)
|
20 |
|
21 |
-
# Button to generate response
|
22 |
if st.button("Generate Response"):
|
23 |
if user_input:
|
24 |
-
# Tokenize the input
|
25 |
inputs = tokenizer(user_input, return_tensors="pt")
|
26 |
-
|
27 |
-
# Generate response
|
28 |
outputs = model.generate(**inputs, max_length=512, num_return_sequences=1)
|
29 |
-
|
30 |
-
# Decode the output
|
31 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
32 |
-
|
33 |
-
# Display the response
|
34 |
st.write("Model Response:")
|
35 |
st.write(response)
|
36 |
else:
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
from peft import PeftModel
|
4 |
|
5 |
+
# Load the base model and adapter
|
6 |
@st.cache_resource
|
7 |
def load_model():
|
8 |
+
base_model_name = "Qwen/Qwen2.5-Coder-3B-Instruct" # Ensure this is the correct base model
|
9 |
+
adapter_model_name = "mohamedyd/Natural-Coder-3B-Instruct-V1"
|
10 |
+
|
11 |
+
# Load the base model
|
12 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, trust_remote_code=True)
|
13 |
+
|
14 |
+
# Load the PEFT adapter on top of the base model
|
15 |
+
model = PeftModel.from_pretrained(base_model, adapter_model_name)
|
16 |
+
|
17 |
+
# Load tokenizer from base model
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
|
19 |
+
|
20 |
return model, tokenizer
|
21 |
|
22 |
model, tokenizer = load_model()
|
23 |
|
24 |
+
# Streamlit App UI
|
25 |
st.title("Natural-Coder-3B-Instruct-V1 Model Interaction")
|
26 |
|
|
|
27 |
user_input = st.text_area("Enter your prompt here:", height=150)
|
28 |
|
|
|
29 |
if st.button("Generate Response"):
|
30 |
if user_input:
|
|
|
31 |
inputs = tokenizer(user_input, return_tensors="pt")
|
|
|
|
|
32 |
outputs = model.generate(**inputs, max_length=512, num_return_sequences=1)
|
|
|
|
|
33 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
34 |
st.write("Model Response:")
|
35 |
st.write(response)
|
36 |
else:
|