File size: 7,973 Bytes
3adc52b
1a13ee2
 
 
 
 
d0281af
3adc52b
 
35c753b
0d4c240
 
9132eff
 
 
 
 
edfb0d5
 
 
 
 
 
 
 
 
b6ff120
16a5a24
b6ff120
 
 
 
 
 
530aa21
 
 
16a5a24
b6ff120
 
 
 
 
 
 
530aa21
 
 
 
 
 
 
 
 
 
 
 
 
b6ff120
 
 
0d4c240
aaad9ae
b6ff120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00fd5f5
 
 
 
 
ce080db
00fd5f5
b6ff120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d4c240
 
 
1a13ee2
 
47fa873
 
632b5c9
47fa873
 
 
 
 
 
 
 
 
 
1a13ee2
 
 
632b5c9
 
1a13ee2
3adc52b
 
 
 
 
 
7bef900
3adc52b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a13ee2
 
ed91cef
d0281af
632b5c9
 
1a13ee2
632b5c9
 
 
1a13ee2
3adc52b
edfb0d5
47fa873
632b5c9
47fa873
 
 
 
 
1a13ee2
 
8fe992b
3adc52b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from smolagents import CodeAgent,DuckDuckGoSearchTool, LiteLLMModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from tools.visit_webpage import VisitWebpageTool
import os
from Gradio_UI import GradioUI
from PIL import Image
from duckduckgo_search import DDGS

import datetime
import time



# @tool
# def show_image(image : Image.Image )-> str :#it's import to specify the return type
#     #Keep this format for the description / args / args description but feel free to modify the tool
#     """A tool that shows image generated by image_generation_tool  
#     Args:
#         image: the input image with the original type
#     """    
#     image.show()
#     return "image showed successfully!"

@tool
def browsing_tool_fetch_content(url: str, query_context: str) -> str:
    """
    Placeholder function to simulate fetching full content from a URL.
    In a real scenario, this would use a library like 'requests' and 'BeautifulSoup'
    or a dedicated browsing/scraping API.
    The query_context is provided if the browsing tool can use it for better extraction.

     Args:
        url: the URL to fetch the content from.
        query_context: the context related to the URL.
    """
    print(f"[Browsing Tool Stub] Attempting to fetch content for URL: {url} (context: '{query_context}')")
    # Simulate fetching content. Replace with actual fetching logic.
    # For demonstration, we'll return a placeholder.
    # In a real implementation, you'd handle potential errors (network issues, 404s, etc.)
    try:
        # Example (conceptual - requests/BeautifulSoup would be more robust):
        import requests
        from bs4 import BeautifulSoup
        response = requests.get(url, timeout=10)
        response.raise_for_status() # Raise an exception for HTTP errors
        soup = BeautifulSoup(response.content, 'html.parser')
        # Extract text - this is a simple example and might need refinement
        paragraphs = soup.find_all('p')
        fetched_text = "\n".join([p.get_text() for p in paragraphs])
        if not fetched_text:
            # Fallback or more targeted extraction if <p> tags are not primary content holders
            fetched_text = soup.get_text(separator='\n', strip=True)
        return fetched_text
        # return f"Full content for {url} would be fetched here. This is a placeholder. Query context: {query_context}"
    except Exception as e:
        return f"Error fetching content from {url}: {str(e)}"

@tool
def search_duckduckgo(topic: str, max_results: int = 3) -> list:
    """
    Searches DuckDuckGo for a given topic, retrieves search results,
    and then attempts to fetch the full content of each result URL.

    Args:
      topic: The topic to search for.
      max_results: The maximum number of search results to process.

    Returns:
      A list of dictionaries, where each dictionary represents a search result
      and contains:
        - 'title': The title of the search result.
        - 'href': The URL of the search result.
        - 'original_snippet': The original snippet from DuckDuckGo.
        - 'full_content': The fetched full content from the URL (or an error message/placeholder).
    """
    print(f"Searching DuckDuckGo for: {topic} (max_results: {max_results})")
    detailed_results_list = []
    
    try:
        # Get initial search results from DuckDuckGo
        initial_results = DDGS().text(topic, max_results=max_results)
        
        if not initial_results:
            print("No initial results found from DuckDuckGo.")
            return []

        print(f"Found {len(initial_results)} initial results. Now fetching full content...")

        for result in initial_results:
            title = result.get('title', 'N/A')
            href = result.get('href', None)
            original_snippet = result.get('body', 'N/A')
            
            print(f"\nProcessing result: {title}")
            print(f"  URL: {href}")

            full_content = "N/A" # Default if URL is missing or fetching fails
            if href:
                # Use the placeholder browsing tool to fetch full content
                # Pass the original 'topic' as query_context for the browsing tool
                full_content = browsing_tool_fetch_content(url=href, query_context=topic)
            else:
                print("  No URL found for this result, cannot fetch full content.")
                full_content = "No URL provided in search result."

            detailed_results_list.append({
                'title': title,
                'href': href,
                'original_snippet': original_snippet,
                'full_content': full_content
            })
            print(f"  Full content (or placeholder/error): {full_content[:200]}...") # Print a snippet of fetched content

    except Exception as e:
        print(f"An error occurred during the search or content fetching process: {str(e)}")
        # Optionally, return partial results or an empty list depending on desired error handling
        # return detailed_results_list # Could return what was processed so far

    return [result['full_content'] for result in detailed_results_list]




# @tool
# def search_duckduckgo(topic : str)-> list:
#   """
#   Searches DuckDuckGo for a given topic and returns a list of results.

#   Args:
#     topic: The topic to search for.

#   Returns:
#     A list of dictionaries, where each dictionary represents a search result
#     and contains keys like 'title', 'href', and 'body'.
#   """
#   results = DDGS().text(topic, max_results=3)
#   return results


    
@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

os.environ["GOOGLE_API_KEY"] = "AIzaSyBcJrlnDDdWtjUDiLrisSOPuaAGizCLKO4"
gemini_api_key = os.environ.get("GOOGLE_API_KEY")

try:
    # LiteLLM uses 'gemini/' prefix for Google AI Studio models
    gemini_model = LiteLLMModel(
        model_id="gemini/gemini-1.5-flash-latest",
        api_key=gemini_api_key,
        temperature = 0.5,
        max_tokens = 2096,
        custom_role_conversions=None
    )
    print("Successfully initialized LiteLLMModel for Gemini 1.5 Flash.")

except Exception as e:
    print(f"Failed to initialize LiteLLMModel: {e}")
    gemini_model = None
    
# model = HfApiModel(
# max_tokens=2096,
# temperature=0.5,
# model_id='google/gemma-2b-it',# it is possible that this model may be overloaded
# custom_role_conversions=None,
# )


search_tool = DuckDuckGoSearchTool()
web_visit = VisitWebpageTool()
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=gemini_model,
    tools=[final_answer,get_current_time_in_timezone, search_tool, web_visit, image_generation_tool], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()