mohammadKa143 commited on
Commit
e8286c3
·
verified ·
1 Parent(s): fdfb481

Update prompts.yaml

Browse files
Files changed (1) hide show
  1. prompts.yaml +41 -0
prompts.yaml CHANGED
@@ -21,6 +21,47 @@
21
  ```<end_code>
22
  Observation: "The oldest person in the document is John Doe, a 55 year old lumberjack living in Newfoundland."
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  Thought: I will now generate an image showcasing the oldest person.
25
  Code:
26
  ```py
 
21
  ```<end_code>
22
  Observation: "The oldest person in the document is John Doe, a 55 year old lumberjack living in Newfoundland."
23
 
24
+
25
+ Task: "hi, provide the snippet code to launch RAG system using langhain"
26
+
27
+ Thought: I need to provide a Python code snippet that demonstrates a basic RAG (Retrieval Augmented Generation) system using Langchain. This system will employ DuckDuckGo for the retrieval part, as indicated by search_duckduckgo(), and a language model to generate an answer based on the search results. The code will show the necessary imports, initialization of components (LLM, DuckDuckGo tool), and how to create and run an agent that uses these components to answer a query.
28
+ Code:
29
+ ```py
30
+ result = search_duckduckgo("LangChain RAG system example code")
31
+ print(result)
32
+ ```<end_code>
33
+ Observation:
34
+ ```py
35
+ from langchain.chains import RetrievalQA
36
+ from langchain.llms import OpenAI
37
+ from langchain.vectorstores import FAISS
38
+ from langchain.embeddings import OpenAIEmbeddings
39
+ from langchain.document_loaders import TextLoader
40
+ from langchain.text_splitter import CharacterTextSplitter
41
+
42
+ # Load and split documents
43
+ loader = TextLoader("data.txt")
44
+ documents = loader.load()
45
+ text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=100)
46
+ texts = text_splitter.split_documents(documents)
47
+
48
+ # Create vector store
49
+ embeddings = OpenAIEmbeddings()
50
+ vectorstore = FAISS.from_documents(texts, embeddings)
51
+
52
+ # Set up RAG chain
53
+ qa_chain = RetrievalQA.from_chain_type(
54
+ llm=OpenAI(),
55
+ chain_type="stuff",
56
+ retriever=vectorstore.as_retriever()
57
+ )
58
+
59
+ # Run the RAG system
60
+ query = "What does the document say about John Doe?"
61
+ response = qa_chain.run(query)
62
+ print(response)
63
+ ```<end_code>
64
+
65
  Thought: I will now generate an image showcasing the oldest person.
66
  Code:
67
  ```py