File size: 20,952 Bytes
deafbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a2a3bc
 
deafbd7
 
9a2a3bc
deafbd7
 
9a2a3bc
deafbd7
 
9a2a3bc
 
deafbd7
9a2a3bc
 
deafbd7
 
 
9a2a3bc
3e2ff2f
deafbd7
9a2a3bc
deafbd7
9a2a3bc
3e2ff2f
9a2a3bc
 
 
deafbd7
9a2a3bc
deafbd7
9a2a3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e2ff2f
 
9a2a3bc
 
 
 
 
deafbd7
3e2ff2f
9a2a3bc
 
 
 
 
0cc5955
9a2a3bc
3e2ff2f
9a2a3bc
3e2ff2f
9a2a3bc
0cc5955
9a2a3bc
 
 
3e2ff2f
deafbd7
 
 
 
 
 
 
 
 
9a2a3bc
deafbd7
3e2ff2f
0cc5955
9a2a3bc
deafbd7
3e2ff2f
 
deafbd7
3e2ff2f
9a2a3bc
 
deafbd7
 
9a2a3bc
3e2ff2f
9a2a3bc
3e2ff2f
 
 
 
 
deafbd7
3e2ff2f
9a2a3bc
 
 
3e2ff2f
9a2a3bc
3e2ff2f
9a2a3bc
 
 
3e2ff2f
9a2a3bc
 
 
 
 
 
deafbd7
3e2ff2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deafbd7
0cc5955
9a2a3bc
0cc5955
9a2a3bc
3e2ff2f
9a2a3bc
 
 
3e2ff2f
9a2a3bc
 
0cc5955
9a2a3bc
 
 
 
 
3e2ff2f
9a2a3bc
 
 
3e2ff2f
9a2a3bc
deafbd7
 
 
 
 
9a2a3bc
deafbd7
 
 
9a2a3bc
 
 
0cc5955
 
9a2a3bc
0cc5955
9a2a3bc
3e2ff2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cc5955
 
3e2ff2f
9a2a3bc
3e2ff2f
0cc5955
3e2ff2f
 
0cc5955
3e2ff2f
deafbd7
9a2a3bc
 
 
3e2ff2f
0cc5955
 
 
3e2ff2f
 
9a2a3bc
0cc5955
9a2a3bc
3e2ff2f
9a2a3bc
 
 
3e2ff2f
9a2a3bc
 
deafbd7
 
3e2ff2f
9a2a3bc
0cc5955
3e2ff2f
9a2a3bc
 
3e2ff2f
9a2a3bc
 
deafbd7
9a2a3bc
deafbd7
0cc5955
 
 
3e2ff2f
 
0cc5955
 
9a2a3bc
3e2ff2f
 
9a2a3bc
 
0cc5955
 
9a2a3bc
 
 
3e2ff2f
9a2a3bc
 
3e2ff2f
9a2a3bc
 
 
 
 
 
 
 
 
3e2ff2f
 
0cc5955
 
 
9a2a3bc
0cc5955
 
 
 
9a2a3bc
3e2ff2f
 
deafbd7
 
9a2a3bc
 
 
0cc5955
3e2ff2f
0cc5955
3e2ff2f
9a2a3bc
 
0cc5955
9a2a3bc
 
3e2ff2f
9a2a3bc
3e2ff2f
 
0cc5955
9a2a3bc
0cc5955
 
3e2ff2f
 
0cc5955
 
9a2a3bc
0cc5955
3e2ff2f
 
 
 
 
 
 
 
0cc5955
3e2ff2f
 
 
9a2a3bc
 
3e2ff2f
9a2a3bc
 
0cc5955
3e2ff2f
 
 
0cc5955
 
9a2a3bc
0cc5955
9a2a3bc
 
0cc5955
3e2ff2f
0cc5955
deafbd7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import mimetypes
import os
import re
import shutil
from typing import Optional
import tempfile # Added for PIL image saving
from PIL import Image as PILImage # Added for PIL image handling

from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
from smolagents.agents import ActionStep, MultiStepAgent 
from smolagents.memory import MemoryStep
from smolagents.utils import _is_package_available
import gradio as gr # Ensure gradio is imported at the top level


def pull_messages_from_step_dict(step_log: MemoryStep):
    """Extract messages as dicts for Gradio type='messages' Chatbot"""
    if isinstance(step_log, ActionStep):
        step_number_str = f"Step {step_log.step_number}" if step_log.step_number is not None else "Processing"
        yield {"role": "assistant", "content": f"**{step_number_str}**"}

        if hasattr(step_log, "model_output") and step_log.model_output is not None:
            model_output = step_log.model_output.strip()
            model_output = re.sub(r"```\s*<end_code>[\s\S]*|[\s\S]*<end_code>\s*```", "```", model_output, flags=re.DOTALL)
            model_output = re.sub(r"<end_code>", "", model_output) 
            model_output = model_output.strip()
            yield {"role": "assistant", "content": model_output}

        if hasattr(step_log, "tool_calls") and step_log.tool_calls:
            tc = step_log.tool_calls[0] 
            tool_info_md = f"🛠️ **Tool Used: {tc.name}**\n"
            
            args = tc.arguments
            if isinstance(args, dict):
                args_str = str(args.get("answer", str(args)))
            else:
                args_str = str(args).strip()
            
            if tc.name == "python_interpreter":
                code_content = args_str
                code_content = re.sub(r"^```python\s*\n?", "", code_content)
                code_content = re.sub(r"\n?```\s*$", "", code_content)
                code_content = re.sub(r"^\s*<end_code>\s*", "", code_content)
                code_content = re.sub(r"\s*<end_code>\s*$", "", code_content)
                code_content = code_content.strip()
                tool_info_md += f"Executing Code:\n```python\n{code_content}\n```\n"
            else:
                tool_info_md += f"Arguments: `{args_str}`\n"

            if hasattr(step_log, "observations") and step_log.observations and step_log.observations.strip():
                obs_content = step_log.observations.strip()
                obs_content = re.sub(r"^Execution logs:\s*", "", obs_content).strip()
                if obs_content: 
                    tool_info_md += f"📝 **Tool Output/Logs:**\n```text\n{obs_content}\n```\n" # Use text for generic logs
            
            if hasattr(step_log, "error") and step_log.error:
                tool_info_md += f"💥 **Error:** {str(step_log.error)}\n"
            
            yield {"role": "assistant", "content": tool_info_md.strip()}

        elif hasattr(step_log, "error") and step_log.error: 
            yield {"role": "assistant", "content": f"💥 **Error:** {str(step_log.error)}"}
        
        footnote_parts = []
        if step_log.step_number is not None:
            footnote_parts.append(f"Step {step_log.step_number}")
        if hasattr(step_log, "duration") and step_log.duration is not None:
            footnote_parts.append(f"Duration: {round(float(step_log.duration), 2)}s")
        if hasattr(step_log, "input_token_count") and step_log.input_token_count is not None:
             footnote_parts.append(f"InTokens: {step_log.input_token_count:,}")
        if hasattr(step_log, "output_token_count") and step_log.output_token_count is not None:
             footnote_parts.append(f"OutTokens: {step_log.output_token_count:,}")
        
        if footnote_parts:
            footnote_text = " | ".join(footnote_parts)
            yield {"role": "assistant", "content": f"""<p style="color: #999; font-size: 0.8em; margin-top:0; margin-bottom:0;">{footnote_text}</p>"""}
        yield {"role": "assistant", "content": "---"} 


def stream_to_gradio(
    agent,
    task: str,
    reset_agent_memory: bool = False,
    additional_args: Optional[dict] = None,
):
    if not _is_package_available("gradio"):
        raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`")

    if hasattr(agent, 'interaction_logs'): 
        agent.interaction_logs.clear()
        print("DEBUG Gradio: Cleared agent interaction_logs for new run.")

    # This will collect all step_log objects from the agent run
    all_step_logs = []
    for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
        all_step_logs.append(step_log) # Store the log
        if hasattr(agent.model, "last_input_token_count") and agent.model.last_input_token_count is not None:
            if isinstance(step_log, ActionStep):
                step_log.input_token_count = agent.model.last_input_token_count
                step_log.output_token_count = agent.model.last_output_token_count
        
        for msg_dict in pull_messages_from_step_dict(step_log): 
            yield msg_dict
    
    # After the loop, the last item in all_step_logs is the final output/state from agent.run
    if not all_step_logs: # Should not happen if agent.run yields at least one thing
        yield {"role": "assistant", "content": "Agent did not produce any output."}
        return

    final_answer_content = all_step_logs[-1] # This is what final_answer tool returns or the last ActionStep.final_answer

    # --- Handle final answer for type="messages" ---
    if isinstance(final_answer_content, PILImage.Image):
        print("DEBUG Gradio (stream_to_gradio): Final answer content IS a raw PIL Image.")
        try:
            # delete=False is crucial for Gradio to access the file before it's cleaned up
            with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
                final_answer_content.save(tmp_file, format="PNG")
                image_path_for_gradio = tmp_file.name
            print(f"DEBUG Gradio: Saved PIL image to temp path for display: {image_path_for_gradio}")
            yield {"role": "assistant", "content": image_path_for_gradio} 
            return 
        except Exception as e:
            print(f"DEBUG Gradio: Error saving PIL image from final_answer_content: {e}")
            yield {"role": "assistant", "content": f"**Final Answer (Error displaying image):** {e}"}
            return

    # If not a raw PIL Image, then try smolagents processing from handle_agent_output_types
    # The 'final_answer_content' here could be a FinalAnswerStep object or similar
    # We need to extract the actual content from it if it's a wrapper.
    actual_content_for_handling = final_answer_content
    if hasattr(final_answer_content, 'final_answer') and not isinstance(final_answer_content, (str, PILImage.Image)):
         actual_content_for_handling = final_answer_content.final_answer
         print(f"DEBUG Gradio: Extracted actual_content_for_handling from FinalAnswerStep: {type(actual_content_for_handling)}")


    # Re-check if the extracted content is a PIL Image
    if isinstance(actual_content_for_handling, PILImage.Image):
        print("DEBUG Gradio (stream_to_gradio): Extracted content IS a raw PIL Image.")
        try:
            with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
                actual_content_for_handling.save(tmp_file, format="PNG")
                image_path_for_gradio = tmp_file.name
            print(f"DEBUG Gradio: Saved extracted PIL image to temp path: {image_path_for_gradio}")
            yield {"role": "assistant", "content": image_path_for_gradio} 
            return
        except Exception as e:
            print(f"DEBUG Gradio: Error saving extracted PIL image: {e}")
            yield {"role": "assistant", "content": f"**Final Answer (Error displaying image from extracted content):** {e}"}
            return

    final_answer_processed = handle_agent_output_types(actual_content_for_handling)
    print(f"DEBUG Gradio: final_answer_processed type after handle_agent_output_types: {type(final_answer_processed)}")


    if isinstance(final_answer_processed, AgentText):
        yield {"role": "assistant", "content": f"**Final Answer:**\n{final_answer_processed.to_string()}"}
    elif isinstance(final_answer_processed, AgentImage):
        image_path = final_answer_processed.to_string()
        print(f"DEBUG Gradio (stream_to_gradio): final_answer_processed is AgentImage. Path: {image_path}")
        if image_path and os.path.exists(image_path):
             yield {"role": "assistant", "content": image_path} 
        else:
            err_msg = f"Error: Image path from AgentImage ('{image_path}') not found or invalid after smolagents processing."
            print(f"DEBUG Gradio: {err_msg}")
            yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
    elif isinstance(final_answer_processed, AgentAudio):
        audio_path = final_answer_processed.to_string()
        print(f"DEBUG Gradio (stream_to_gradio): AgentAudio path: {audio_path}")
        if audio_path and os.path.exists(audio_path):
            yield {"role": "assistant", "content": audio_path}
        else:
            err_msg = f"Error: Audio path from AgentAudio ('{audio_path}') not found"
            print(f"DEBUG Gradio: {err_msg}")
            yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
    else: 
        # This will display the string representation of FinalAnswerStep if not handled above
        yield {"role": "assistant", "content": f"**Final Answer:**\n{str(final_answer_processed)}"}


class GradioUI:
    def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
        if not _is_package_available("gradio"):
            raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`")
        self.agent = agent
        self.file_upload_folder = file_upload_folder
        if self.file_upload_folder is not None:
            if not os.path.exists(self.file_upload_folder):
                os.makedirs(self.file_upload_folder, exist_ok=True)
        self._latest_file_path_for_download = None

    def _check_for_created_file(self):
        self._latest_file_path_for_download = None 
        if hasattr(self.agent, 'interaction_logs') and self.agent.interaction_logs:
            print(f"DEBUG Gradio UI: Checking {len(self.agent.interaction_logs)} interaction log entries for created files.")
            for log_entry in reversed(self.agent.interaction_logs): 
                if isinstance(log_entry, ActionStep):
                    observations = getattr(log_entry, 'observations', None)
                    tool_calls = getattr(log_entry, 'tool_calls', [])

                    # Check if python_interpreter was used AND its code involved create_document
                    # For simplicity, we'll primarily rely on parsing observations for the path pattern
                    if observations and isinstance(observations, str):
                        # This regex should match paths printed by your create_document tool
                        path_match = re.search(r"(/tmp/[a-zA-Z0-9_]+/generated_document\.(?:docx|pdf|txt))", observations)
                        if path_match:
                            extracted_path = path_match.group(1)
                            normalized_path = os.path.normpath(extracted_path)
                            if os.path.exists(normalized_path):
                                self._latest_file_path_for_download = normalized_path
                                print(f"DEBUG Gradio UI: File path for download set (from observations): {self._latest_file_path_for_download}")
                                return True 
                            else:
                                print(f"DEBUG Gradio UI: Path from observations ('{normalized_path}') does not exist.")
        print("DEBUG Gradio UI: No valid generated file path found in agent logs for download.")
        return False

    def interact_with_agent(self, prompt_text: str, current_chat_history: list):
        print(f"DEBUG Gradio: interact_with_agent called with prompt: '{prompt_text}'")
        print(f"DEBUG Gradio: Current chat history (input type {type(current_chat_history)}): {current_chat_history}")

        # current_chat_history from gr.Chatbot(type="messages") is already a list of dicts
        updated_chat_history = current_chat_history + [{"role": "user", "content": prompt_text}]
        
        yield updated_chat_history, gr.update(visible=False), gr.update(value=None, visible=False)

        agent_responses_for_history = []
        for msg_dict in stream_to_gradio(self.agent, task=prompt_text, reset_agent_memory=False):
            agent_responses_for_history.append(msg_dict)
            yield updated_chat_history + agent_responses_for_history, gr.update(visible=False), gr.update(value=None, visible=False) 

        file_found = self._check_for_created_file()
        
        final_chat_display = updated_chat_history + agent_responses_for_history
        print(f"DEBUG Gradio: Final chat history for display: {len(final_chat_display)} messages.")
        yield final_chat_display, gr.update(visible=file_found), gr.update(value=None, visible=False)

    def upload_file(self, file, file_uploads_log_state):
        if file is None: 
            return gr.update(value="No file uploaded.", visible=True), file_uploads_log_state

        if not self.file_upload_folder or not os.path.exists(self.file_upload_folder):
            os.makedirs(self.file_upload_folder, exist_ok=True)

        allowed_file_types = [
            "application/pdf",
            "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
            "text/plain", "image/jpeg", "image/png",
        ]
        
        original_name = file.orig_name if hasattr(file, 'orig_name') and file.orig_name else os.path.basename(file.name)
        
        mime_type, _ = mimetypes.guess_type(file.name) 
        if mime_type is None: 
            mime_type, _ = mimetypes.guess_type(original_name)

        if mime_type not in allowed_file_types:
            return gr.update(value=f"File type '{mime_type or 'unknown'}' for '{original_name}' is disallowed.", visible=True), file_uploads_log_state

        sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)
        base_name, current_ext = os.path.splitext(sanitized_name)
        
        # Updated mimetypes to extension mapping
        common_mime_to_ext = {
            "application/pdf": ".pdf",
            "application/vnd.openxmlformats-officedocument.wordprocessingml.document": ".docx",
            "text/plain": ".txt", "image/jpeg": ".jpg", "image/png": ".png"
        }
        expected_ext = common_mime_to_ext.get(mime_type)

        if expected_ext and current_ext.lower() != expected_ext.lower():
            sanitized_name = base_name + expected_ext
        
        destination_path = os.path.join(self.file_upload_folder, sanitized_name)
        
        try:
            shutil.copy(file.name, destination_path) 
            print(f"DEBUG Gradio: File '{original_name}' copied to '{destination_path}'")
            updated_log = file_uploads_log_state + [destination_path]
            return gr.update(value=f"Uploaded: {original_name}", visible=True), updated_log
        except Exception as e:
            print(f"DEBUG Gradio: Error copying uploaded file: {e}")
            return gr.update(value=f"Error uploading {original_name}: {e}", visible=True), file_uploads_log_state

    def log_user_message(self, text_input_value: str, current_file_uploads: list):
        full_prompt = text_input_value
        if current_file_uploads:
            files_str = ", ".join([os.path.basename(f) for f in current_file_uploads])
            full_prompt += f"\n\n[Uploaded files for context: {files_str}]"
        print(f"DEBUG Gradio: Prepared prompt for agent: {full_prompt[:300]}...") # Log snippet
        return full_prompt, "" 

    def prepare_and_show_download_file(self):
        if self._latest_file_path_for_download and os.path.exists(self._latest_file_path_for_download):
            print(f"DEBUG Gradio UI: Preparing download for UI component: {self._latest_file_path_for_download}")
            return gr.File.update(value=self._latest_file_path_for_download, 
                                  label=os.path.basename(self._latest_file_path_for_download), 
                                  visible=True)
        else:
            print("DEBUG Gradio UI: No valid file path to prepare for download component.")
            # gr.Warning("No file available for download or path is invalid.") # Causes JS error if used as return
            return gr.File.update(visible=False, value=None) # Ensure value is None if not visible

    def launch(self, **kwargs):
        with gr.Blocks(fill_height=True, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue)) as demo:
            file_uploads_log_state = gr.State([]) 
            prepared_prompt_for_agent = gr.State("")

            gr.Markdown("## Smol Talk with your Agent") # Changed title slightly

            with gr.Row(equal_height=False): # Allow columns to size independently
                with gr.Column(scale=3):
                    chatbot_display = gr.Chatbot(
                        label="Agent Interaction",
                        type="messages", 
                        avatar_images=(None, "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-round.png"),
                        height=700, # Increased height
                        show_copy_button=True,
                        bubble_full_width=False,
                        show_label=False # Hide the "Agent Interaction" label above chatbot
                    )
                    text_message_input = gr.Textbox(
                        lines=1, 
                        label="Your Message to the Agent", 
                        placeholder="Type your message and press Enter, or Shift+Enter for new line...",
                        show_label=False # Hide label for text input
                    )
                
                with gr.Column(scale=1):
                    if self.file_upload_folder is not None:
                        with gr.Accordion("File Upload", open=False): # Collapsible section
                            file_uploader = gr.File(label="Upload a supporting file (PDF, DOCX, TXT, JPG, PNG)")
                            upload_status_text = gr.Textbox(label="Upload Status", interactive=False, lines=1) # single line
                            file_uploader.upload( # Changed from .change to .upload for gr.File
                                self.upload_file,
                                [file_uploader, file_uploads_log_state],
                                [upload_status_text, file_uploads_log_state],
                            )
                    
                    with gr.Accordion("Generated File", open=True): # Collapsible, open by default
                        download_action_button = gr.Button("Download Generated File", visible=False) 
                        file_download_display_component = gr.File(label="Downloadable Document", visible=False, interactive=False) 

            text_message_input.submit(
                self.log_user_message, 
                [text_message_input, file_uploads_log_state],
                [prepared_prompt_for_agent, text_message_input] 
            ).then(
                self.interact_with_agent, 
                [prepared_prompt_for_agent, chatbot_display], # chatbot_display is input here
                [chatbot_display, download_action_button, file_download_display_component] # chatbot_display is output here
            )

            download_action_button.click(
                self.prepare_and_show_download_file, 
                [], 
                [file_download_display_component] 
            )
        # Default share=False, can be overridden by kwargs
        demo.launch(debug=True, share=kwargs.get("share", False), **kwargs)

__all__ = ["stream_to_gradio", "GradioUI"]