File size: 20,952 Bytes
deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc 3e2ff2f deafbd7 9a2a3bc deafbd7 9a2a3bc 3e2ff2f 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc 3e2ff2f 9a2a3bc deafbd7 3e2ff2f 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f 9a2a3bc 3e2ff2f 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f deafbd7 9a2a3bc deafbd7 3e2ff2f 0cc5955 9a2a3bc deafbd7 3e2ff2f deafbd7 3e2ff2f 9a2a3bc deafbd7 9a2a3bc 3e2ff2f 9a2a3bc 3e2ff2f deafbd7 3e2ff2f 9a2a3bc 3e2ff2f 9a2a3bc 3e2ff2f 9a2a3bc 3e2ff2f 9a2a3bc deafbd7 3e2ff2f deafbd7 0cc5955 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f 9a2a3bc 3e2ff2f 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f 9a2a3bc 3e2ff2f 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f 0cc5955 3e2ff2f 9a2a3bc 3e2ff2f 0cc5955 3e2ff2f 0cc5955 3e2ff2f deafbd7 9a2a3bc 3e2ff2f 0cc5955 3e2ff2f 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f 9a2a3bc 3e2ff2f 9a2a3bc deafbd7 3e2ff2f 9a2a3bc 0cc5955 3e2ff2f 9a2a3bc 3e2ff2f 9a2a3bc deafbd7 9a2a3bc deafbd7 0cc5955 3e2ff2f 0cc5955 9a2a3bc 3e2ff2f 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f 9a2a3bc 3e2ff2f 9a2a3bc 3e2ff2f 0cc5955 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f deafbd7 9a2a3bc 0cc5955 3e2ff2f 0cc5955 3e2ff2f 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f 9a2a3bc 3e2ff2f 0cc5955 9a2a3bc 0cc5955 3e2ff2f 0cc5955 9a2a3bc 0cc5955 3e2ff2f 0cc5955 3e2ff2f 9a2a3bc 3e2ff2f 9a2a3bc 0cc5955 3e2ff2f 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 3e2ff2f 0cc5955 deafbd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import mimetypes
import os
import re
import shutil
from typing import Optional
import tempfile # Added for PIL image saving
from PIL import Image as PILImage # Added for PIL image handling
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
from smolagents.agents import ActionStep, MultiStepAgent
from smolagents.memory import MemoryStep
from smolagents.utils import _is_package_available
import gradio as gr # Ensure gradio is imported at the top level
def pull_messages_from_step_dict(step_log: MemoryStep):
"""Extract messages as dicts for Gradio type='messages' Chatbot"""
if isinstance(step_log, ActionStep):
step_number_str = f"Step {step_log.step_number}" if step_log.step_number is not None else "Processing"
yield {"role": "assistant", "content": f"**{step_number_str}**"}
if hasattr(step_log, "model_output") and step_log.model_output is not None:
model_output = step_log.model_output.strip()
model_output = re.sub(r"```\s*<end_code>[\s\S]*|[\s\S]*<end_code>\s*```", "```", model_output, flags=re.DOTALL)
model_output = re.sub(r"<end_code>", "", model_output)
model_output = model_output.strip()
yield {"role": "assistant", "content": model_output}
if hasattr(step_log, "tool_calls") and step_log.tool_calls:
tc = step_log.tool_calls[0]
tool_info_md = f"🛠️ **Tool Used: {tc.name}**\n"
args = tc.arguments
if isinstance(args, dict):
args_str = str(args.get("answer", str(args)))
else:
args_str = str(args).strip()
if tc.name == "python_interpreter":
code_content = args_str
code_content = re.sub(r"^```python\s*\n?", "", code_content)
code_content = re.sub(r"\n?```\s*$", "", code_content)
code_content = re.sub(r"^\s*<end_code>\s*", "", code_content)
code_content = re.sub(r"\s*<end_code>\s*$", "", code_content)
code_content = code_content.strip()
tool_info_md += f"Executing Code:\n```python\n{code_content}\n```\n"
else:
tool_info_md += f"Arguments: `{args_str}`\n"
if hasattr(step_log, "observations") and step_log.observations and step_log.observations.strip():
obs_content = step_log.observations.strip()
obs_content = re.sub(r"^Execution logs:\s*", "", obs_content).strip()
if obs_content:
tool_info_md += f"📝 **Tool Output/Logs:**\n```text\n{obs_content}\n```\n" # Use text for generic logs
if hasattr(step_log, "error") and step_log.error:
tool_info_md += f"💥 **Error:** {str(step_log.error)}\n"
yield {"role": "assistant", "content": tool_info_md.strip()}
elif hasattr(step_log, "error") and step_log.error:
yield {"role": "assistant", "content": f"💥 **Error:** {str(step_log.error)}"}
footnote_parts = []
if step_log.step_number is not None:
footnote_parts.append(f"Step {step_log.step_number}")
if hasattr(step_log, "duration") and step_log.duration is not None:
footnote_parts.append(f"Duration: {round(float(step_log.duration), 2)}s")
if hasattr(step_log, "input_token_count") and step_log.input_token_count is not None:
footnote_parts.append(f"InTokens: {step_log.input_token_count:,}")
if hasattr(step_log, "output_token_count") and step_log.output_token_count is not None:
footnote_parts.append(f"OutTokens: {step_log.output_token_count:,}")
if footnote_parts:
footnote_text = " | ".join(footnote_parts)
yield {"role": "assistant", "content": f"""<p style="color: #999; font-size: 0.8em; margin-top:0; margin-bottom:0;">{footnote_text}</p>"""}
yield {"role": "assistant", "content": "---"}
def stream_to_gradio(
agent,
task: str,
reset_agent_memory: bool = False,
additional_args: Optional[dict] = None,
):
if not _is_package_available("gradio"):
raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`")
if hasattr(agent, 'interaction_logs'):
agent.interaction_logs.clear()
print("DEBUG Gradio: Cleared agent interaction_logs for new run.")
# This will collect all step_log objects from the agent run
all_step_logs = []
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
all_step_logs.append(step_log) # Store the log
if hasattr(agent.model, "last_input_token_count") and agent.model.last_input_token_count is not None:
if isinstance(step_log, ActionStep):
step_log.input_token_count = agent.model.last_input_token_count
step_log.output_token_count = agent.model.last_output_token_count
for msg_dict in pull_messages_from_step_dict(step_log):
yield msg_dict
# After the loop, the last item in all_step_logs is the final output/state from agent.run
if not all_step_logs: # Should not happen if agent.run yields at least one thing
yield {"role": "assistant", "content": "Agent did not produce any output."}
return
final_answer_content = all_step_logs[-1] # This is what final_answer tool returns or the last ActionStep.final_answer
# --- Handle final answer for type="messages" ---
if isinstance(final_answer_content, PILImage.Image):
print("DEBUG Gradio (stream_to_gradio): Final answer content IS a raw PIL Image.")
try:
# delete=False is crucial for Gradio to access the file before it's cleaned up
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
final_answer_content.save(tmp_file, format="PNG")
image_path_for_gradio = tmp_file.name
print(f"DEBUG Gradio: Saved PIL image to temp path for display: {image_path_for_gradio}")
yield {"role": "assistant", "content": image_path_for_gradio}
return
except Exception as e:
print(f"DEBUG Gradio: Error saving PIL image from final_answer_content: {e}")
yield {"role": "assistant", "content": f"**Final Answer (Error displaying image):** {e}"}
return
# If not a raw PIL Image, then try smolagents processing from handle_agent_output_types
# The 'final_answer_content' here could be a FinalAnswerStep object or similar
# We need to extract the actual content from it if it's a wrapper.
actual_content_for_handling = final_answer_content
if hasattr(final_answer_content, 'final_answer') and not isinstance(final_answer_content, (str, PILImage.Image)):
actual_content_for_handling = final_answer_content.final_answer
print(f"DEBUG Gradio: Extracted actual_content_for_handling from FinalAnswerStep: {type(actual_content_for_handling)}")
# Re-check if the extracted content is a PIL Image
if isinstance(actual_content_for_handling, PILImage.Image):
print("DEBUG Gradio (stream_to_gradio): Extracted content IS a raw PIL Image.")
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
actual_content_for_handling.save(tmp_file, format="PNG")
image_path_for_gradio = tmp_file.name
print(f"DEBUG Gradio: Saved extracted PIL image to temp path: {image_path_for_gradio}")
yield {"role": "assistant", "content": image_path_for_gradio}
return
except Exception as e:
print(f"DEBUG Gradio: Error saving extracted PIL image: {e}")
yield {"role": "assistant", "content": f"**Final Answer (Error displaying image from extracted content):** {e}"}
return
final_answer_processed = handle_agent_output_types(actual_content_for_handling)
print(f"DEBUG Gradio: final_answer_processed type after handle_agent_output_types: {type(final_answer_processed)}")
if isinstance(final_answer_processed, AgentText):
yield {"role": "assistant", "content": f"**Final Answer:**\n{final_answer_processed.to_string()}"}
elif isinstance(final_answer_processed, AgentImage):
image_path = final_answer_processed.to_string()
print(f"DEBUG Gradio (stream_to_gradio): final_answer_processed is AgentImage. Path: {image_path}")
if image_path and os.path.exists(image_path):
yield {"role": "assistant", "content": image_path}
else:
err_msg = f"Error: Image path from AgentImage ('{image_path}') not found or invalid after smolagents processing."
print(f"DEBUG Gradio: {err_msg}")
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
elif isinstance(final_answer_processed, AgentAudio):
audio_path = final_answer_processed.to_string()
print(f"DEBUG Gradio (stream_to_gradio): AgentAudio path: {audio_path}")
if audio_path and os.path.exists(audio_path):
yield {"role": "assistant", "content": audio_path}
else:
err_msg = f"Error: Audio path from AgentAudio ('{audio_path}') not found"
print(f"DEBUG Gradio: {err_msg}")
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
else:
# This will display the string representation of FinalAnswerStep if not handled above
yield {"role": "assistant", "content": f"**Final Answer:**\n{str(final_answer_processed)}"}
class GradioUI:
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
if not _is_package_available("gradio"):
raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`")
self.agent = agent
self.file_upload_folder = file_upload_folder
if self.file_upload_folder is not None:
if not os.path.exists(self.file_upload_folder):
os.makedirs(self.file_upload_folder, exist_ok=True)
self._latest_file_path_for_download = None
def _check_for_created_file(self):
self._latest_file_path_for_download = None
if hasattr(self.agent, 'interaction_logs') and self.agent.interaction_logs:
print(f"DEBUG Gradio UI: Checking {len(self.agent.interaction_logs)} interaction log entries for created files.")
for log_entry in reversed(self.agent.interaction_logs):
if isinstance(log_entry, ActionStep):
observations = getattr(log_entry, 'observations', None)
tool_calls = getattr(log_entry, 'tool_calls', [])
# Check if python_interpreter was used AND its code involved create_document
# For simplicity, we'll primarily rely on parsing observations for the path pattern
if observations and isinstance(observations, str):
# This regex should match paths printed by your create_document tool
path_match = re.search(r"(/tmp/[a-zA-Z0-9_]+/generated_document\.(?:docx|pdf|txt))", observations)
if path_match:
extracted_path = path_match.group(1)
normalized_path = os.path.normpath(extracted_path)
if os.path.exists(normalized_path):
self._latest_file_path_for_download = normalized_path
print(f"DEBUG Gradio UI: File path for download set (from observations): {self._latest_file_path_for_download}")
return True
else:
print(f"DEBUG Gradio UI: Path from observations ('{normalized_path}') does not exist.")
print("DEBUG Gradio UI: No valid generated file path found in agent logs for download.")
return False
def interact_with_agent(self, prompt_text: str, current_chat_history: list):
print(f"DEBUG Gradio: interact_with_agent called with prompt: '{prompt_text}'")
print(f"DEBUG Gradio: Current chat history (input type {type(current_chat_history)}): {current_chat_history}")
# current_chat_history from gr.Chatbot(type="messages") is already a list of dicts
updated_chat_history = current_chat_history + [{"role": "user", "content": prompt_text}]
yield updated_chat_history, gr.update(visible=False), gr.update(value=None, visible=False)
agent_responses_for_history = []
for msg_dict in stream_to_gradio(self.agent, task=prompt_text, reset_agent_memory=False):
agent_responses_for_history.append(msg_dict)
yield updated_chat_history + agent_responses_for_history, gr.update(visible=False), gr.update(value=None, visible=False)
file_found = self._check_for_created_file()
final_chat_display = updated_chat_history + agent_responses_for_history
print(f"DEBUG Gradio: Final chat history for display: {len(final_chat_display)} messages.")
yield final_chat_display, gr.update(visible=file_found), gr.update(value=None, visible=False)
def upload_file(self, file, file_uploads_log_state):
if file is None:
return gr.update(value="No file uploaded.", visible=True), file_uploads_log_state
if not self.file_upload_folder or not os.path.exists(self.file_upload_folder):
os.makedirs(self.file_upload_folder, exist_ok=True)
allowed_file_types = [
"application/pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/plain", "image/jpeg", "image/png",
]
original_name = file.orig_name if hasattr(file, 'orig_name') and file.orig_name else os.path.basename(file.name)
mime_type, _ = mimetypes.guess_type(file.name)
if mime_type is None:
mime_type, _ = mimetypes.guess_type(original_name)
if mime_type not in allowed_file_types:
return gr.update(value=f"File type '{mime_type or 'unknown'}' for '{original_name}' is disallowed.", visible=True), file_uploads_log_state
sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)
base_name, current_ext = os.path.splitext(sanitized_name)
# Updated mimetypes to extension mapping
common_mime_to_ext = {
"application/pdf": ".pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document": ".docx",
"text/plain": ".txt", "image/jpeg": ".jpg", "image/png": ".png"
}
expected_ext = common_mime_to_ext.get(mime_type)
if expected_ext and current_ext.lower() != expected_ext.lower():
sanitized_name = base_name + expected_ext
destination_path = os.path.join(self.file_upload_folder, sanitized_name)
try:
shutil.copy(file.name, destination_path)
print(f"DEBUG Gradio: File '{original_name}' copied to '{destination_path}'")
updated_log = file_uploads_log_state + [destination_path]
return gr.update(value=f"Uploaded: {original_name}", visible=True), updated_log
except Exception as e:
print(f"DEBUG Gradio: Error copying uploaded file: {e}")
return gr.update(value=f"Error uploading {original_name}: {e}", visible=True), file_uploads_log_state
def log_user_message(self, text_input_value: str, current_file_uploads: list):
full_prompt = text_input_value
if current_file_uploads:
files_str = ", ".join([os.path.basename(f) for f in current_file_uploads])
full_prompt += f"\n\n[Uploaded files for context: {files_str}]"
print(f"DEBUG Gradio: Prepared prompt for agent: {full_prompt[:300]}...") # Log snippet
return full_prompt, ""
def prepare_and_show_download_file(self):
if self._latest_file_path_for_download and os.path.exists(self._latest_file_path_for_download):
print(f"DEBUG Gradio UI: Preparing download for UI component: {self._latest_file_path_for_download}")
return gr.File.update(value=self._latest_file_path_for_download,
label=os.path.basename(self._latest_file_path_for_download),
visible=True)
else:
print("DEBUG Gradio UI: No valid file path to prepare for download component.")
# gr.Warning("No file available for download or path is invalid.") # Causes JS error if used as return
return gr.File.update(visible=False, value=None) # Ensure value is None if not visible
def launch(self, **kwargs):
with gr.Blocks(fill_height=True, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue)) as demo:
file_uploads_log_state = gr.State([])
prepared_prompt_for_agent = gr.State("")
gr.Markdown("## Smol Talk with your Agent") # Changed title slightly
with gr.Row(equal_height=False): # Allow columns to size independently
with gr.Column(scale=3):
chatbot_display = gr.Chatbot(
label="Agent Interaction",
type="messages",
avatar_images=(None, "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-round.png"),
height=700, # Increased height
show_copy_button=True,
bubble_full_width=False,
show_label=False # Hide the "Agent Interaction" label above chatbot
)
text_message_input = gr.Textbox(
lines=1,
label="Your Message to the Agent",
placeholder="Type your message and press Enter, or Shift+Enter for new line...",
show_label=False # Hide label for text input
)
with gr.Column(scale=1):
if self.file_upload_folder is not None:
with gr.Accordion("File Upload", open=False): # Collapsible section
file_uploader = gr.File(label="Upload a supporting file (PDF, DOCX, TXT, JPG, PNG)")
upload_status_text = gr.Textbox(label="Upload Status", interactive=False, lines=1) # single line
file_uploader.upload( # Changed from .change to .upload for gr.File
self.upload_file,
[file_uploader, file_uploads_log_state],
[upload_status_text, file_uploads_log_state],
)
with gr.Accordion("Generated File", open=True): # Collapsible, open by default
download_action_button = gr.Button("Download Generated File", visible=False)
file_download_display_component = gr.File(label="Downloadable Document", visible=False, interactive=False)
text_message_input.submit(
self.log_user_message,
[text_message_input, file_uploads_log_state],
[prepared_prompt_for_agent, text_message_input]
).then(
self.interact_with_agent,
[prepared_prompt_for_agent, chatbot_display], # chatbot_display is input here
[chatbot_display, download_action_button, file_download_display_component] # chatbot_display is output here
)
download_action_button.click(
self.prepare_and_show_download_file,
[],
[file_download_display_component]
)
# Default share=False, can be overridden by kwargs
demo.launch(debug=True, share=kwargs.get("share", False), **kwargs)
__all__ = ["stream_to_gradio", "GradioUI"] |