File size: 13,644 Bytes
6fc9a0b 9b5b26a c19d193 6fc9a0b 6aae614 29604a3 ace8575 43be9fd 6fc9a0b 43be9fd 6fc9a0b 9b5b26a 8c4fb61 5df72d6 9b5b26a 29604a3 9b5b26a 8c01ffb 8c4fb61 43be9fd 8c01ffb 6aae614 b45a5f8 29604a3 ae7a494 fd4a42c 378366d fd4a42c 378366d 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e b45a5f8 9b5b26a 8c01ffb 8fe992b 43be9fd 8c01ffb 861422e 8fe992b 43be9fd 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
from smolagents import CodeAgent, tool
import datetime
import requests
import pytz
import yaml
import os
import tempfile
from tools.final_answer import FinalAnswerTool
from tools.visit_webpage import VisitWebpageTool
from smolagents import GradioUI
import gradio as gr
import json
import os
from typing import Dict, List, Optional, Union, Any
# Create a custom model adapter for Gemini since it's not natively supported in smolagents 1.13.0
from smolagents.models import LLMAdapter
import google.generativeai as genai
class CustomGeminiAdapter(LLMAdapter):
"""
Custom adapter for Google's Gemini model.
This adapter lets us use Gemini with smolagents even if it's not natively supported.
"""
def __init__(
self,
model: str = "gemini-1.5-pro",
temperature: float = 0.7,
max_tokens: int = 2048,
api_key: Optional[str] = None,
):
"""Initialize the Gemini adapter."""
self.model = model
self.temperature = temperature
self.max_tokens = max_tokens
# Set up API key
if api_key:
genai.configure(api_key=api_key)
elif os.environ.get("GOOGLE_API_KEY"):
genai.configure(api_key=os.environ.get("GOOGLE_API_KEY"))
else:
raise ValueError("Google API key must be provided either through api_key parameter or GOOGLE_API_KEY environment variable")
# Configure the model
self.generation_config = {
"temperature": temperature,
"max_output_tokens": max_tokens,
"top_p": 0.95,
"top_k": 0,
}
def call(
self,
system_message: str,
messages: List[Dict[str, str]],
functions: Optional[List[Dict]] = None,
function_call: Optional[str] = None,
**kwargs,
) -> Dict[str, Any]:
"""
Call the Gemini model with messages and return the response.
Args:
system_message: System message to set context
messages: List of messages in the conversation
functions: Function definitions (for function calling)
function_call: Function to call
Returns:
Dictionary with model response
"""
try:
# Convert messages format to what Gemini expects
gemini_messages = []
# Add system message as user message at the beginning (Gemini doesn't have system)
if system_message:
gemini_messages.append({
"role": "user",
"parts": [{"text": f"System: {system_message}"}]
})
gemini_messages.append({
"role": "model",
"parts": [{"text": "I understand and will follow these instructions."}]
})
# Add the rest of the messages
for message in messages:
if message["role"] == "system":
# Handle system messages as user instructions
gemini_messages.append({
"role": "user",
"parts": [{"text": f"System instruction: {message['content']}"}]
})
else:
role = "user" if message["role"] == "user" else "model"
gemini_messages.append({
"role": role,
"parts": [{"text": message["content"]}]
})
# Create the Gemini model
model = genai.GenerativeModel(
model_name=self.model,
generation_config=self.generation_config
)
# For function calling (tools)
if functions and len(functions) > 0:
# Simulate function calling by adding function descriptions to the prompt
function_descriptions = []
for func in functions:
function_descriptions.append(f"""
Function Name: {func.get('name')}
Description: {func.get('description')}
Parameters: {json.dumps(func.get('parameters', {}))}
""")
function_context = """
You have access to the following functions. When you decide to use a function, respond with a JSON object with 'function_call' key containing 'name' and 'arguments' keys.
Example: {"function_call": {"name": "function_name", "arguments": {"arg1": "value1"}}}
Functions:
""" + "\n\n".join(function_descriptions)
# Add function description as the last user message
gemini_messages.append({
"role": "user",
"parts": [{"text": function_context}]
})
# Create a chat session
chat = model.start_chat(history=gemini_messages[:-1])
# Get the last message content
last_message = gemini_messages[-1]["parts"][0]["text"]
# Generate response
response = chat.send_message(last_message)
content = response.text
# Process the content to see if it contains a function call
function_call_data = None
if functions:
# Check if the response contains a function call format
import re
function_call_match = re.search(r'{\s*"function_call"\s*:\s*{.*?}\s*}', content, re.DOTALL)
if function_call_match:
try:
function_call_text = function_call_match.group(0)
function_call_data = json.loads(function_call_text)
# Remove the function call from the content
content = content.replace(function_call_text, "").strip()
except json.JSONDecodeError:
pass
# Create response format that matches what smolagents expects
result = {
"content": content
}
# Add function call if present
if function_call_data:
result["function_call"] = {
"name": function_call_data.get("function_call", {}).get("name", ""),
"arguments": function_call_data.get("function_call", {}).get("arguments", {})
}
return result
except Exception as e:
return {"content": f"Error calling Gemini model: {str(e)}"}
'''
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(x:str, y:int)-> int: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build ?"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
'''
@tool
def create_document(text: str, format: str = "docx") -> str:
"""Creates a document with the provided text and allows download.
Args:
text: The text content to write to the document
format: The output format, either 'docx' or 'pdf'
"""
try:
import docx
from docx.shared import Pt
# Create a temp directory to store files
temp_dir = tempfile.mkdtemp()
# Create a new document
doc = docx.Document()
# Add a heading
doc.add_heading('Generated Document', 0)
# Set font style for regular text
style = doc.styles['Normal']
font = style.font
font.name = 'Calibri'
font.size = Pt(11)
# Add paragraphs from the input text
# Split by newlines to maintain paragraph structure
for paragraph in text.split('\n'):
if paragraph.strip(): # Skip empty paragraphs
doc.add_paragraph(paragraph)
# Save the document
docx_path = os.path.join(temp_dir, "generated_document.docx")
doc.save(docx_path)
# Convert to PDF if requested
if format.lower() == "pdf":
try:
from docx2pdf import convert
pdf_path = os.path.join(temp_dir, "generated_document.pdf")
convert(docx_path, pdf_path)
return pdf_path
except ImportError:
return f"PDF conversion requires docx2pdf package. Document saved as DOCX instead at: {docx_path}"
return docx_path
except Exception as e:
return f"Error creating document: {str(e)}"
# Custom file download tool to help with file handling
@tool
def get_file_download_link(file_path: str) -> str:
"""Creates a download link for a file.
Args:
file_path: Path to the file that should be made available for download
"""
if not os.path.exists(file_path):
return f"Error: File not found at {file_path}"
# Get file extension and set up appropriate mime type
_, file_extension = os.path.splitext(file_path)
mime_types = {
'.docx': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
'.pdf': 'application/pdf',
}
mime_type = mime_types.get(file_extension.lower(), 'application/octet-stream')
# Return information that can be used by the agent to instruct the user
return f"File ready for download: {os.path.basename(file_path)} ({mime_type})"
final_answer = FinalAnswerTool()
#web_search=DuckDuckGoSearchTool()
visit_webpage=VisitWebpageTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
# Load LLM
model = GeminiModel(
model="gemini-1.5-pro", # Using Gemini 1.5 Pro which is powerful but has free tier
temperature=0.5,
max_tokens=2048,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
#,web_search
agent = CodeAgent(
model=model,
tools=[final_answer,visit_webpage,create_document,get_file_download_link], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
# Custom Gradio UI with file download capability
class CustomGradioUI(GradioUI):
def build_interface(self):
with gr.Blocks() as interface:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("# AI Assistant")
chatbot = gr.Chatbot(height=600)
msg = gr.Textbox(
placeholder="Ask me anything...",
container=False,
scale=7,
)
# Add a file download component
download_btn = gr.Button("Download File", visible=False)
file_output = gr.File(label="Generated Document", visible=False)
# Store the latest file path
self._latest_file_path = None
def respond(message, chat_history):
agent_response = self.agent.run(message)
chat_history.append((message, agent_response))
# Check if response contains a file path
import re
file_paths = re.findall(r'File ready for download: .+ \((application/[\w.+-]+)\)', agent_response)
show_download = False
self._latest_file_path = None
# Look for generated file paths in the response
paths = re.findall(r'/tmp/\w+/generated_document\.(docx|pdf)', agent_response)
if paths:
self._latest_file_path = paths[0]
show_download = True
return chat_history, gr.Button.update(visible=show_download), gr.File.update(visible=False)
def prepare_download():
if self._latest_file_path:
return gr.File.update(value=self._latest_file_path, visible=True)
return gr.File.update(visible=False)
# Connect the components
msg.submit(respond, [msg, chatbot], [chatbot, download_btn, file_output])
download_btn.click(prepare_download, [], [file_output])
gr.Markdown("Powered by smolagents and Qwen")
return interface
GradioUI(agent).launch() |