Update Gradio_UI.py
Browse files- Gradio_UI.py +36 -67
Gradio_UI.py
CHANGED
|
@@ -18,14 +18,14 @@ import os
|
|
| 18 |
import re
|
| 19 |
import shutil
|
| 20 |
from typing import Optional
|
| 21 |
-
import tempfile
|
| 22 |
-
from PIL import Image as PILImage
|
| 23 |
|
| 24 |
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
|
| 25 |
from smolagents.agents import ActionStep, MultiStepAgent
|
| 26 |
from smolagents.memory import MemoryStep
|
| 27 |
from smolagents.utils import _is_package_available
|
| 28 |
-
import gradio as gr
|
| 29 |
|
| 30 |
|
| 31 |
def pull_messages_from_step_dict(step_log: MemoryStep):
|
|
@@ -66,7 +66,7 @@ def pull_messages_from_step_dict(step_log: MemoryStep):
|
|
| 66 |
obs_content = step_log.observations.strip()
|
| 67 |
obs_content = re.sub(r"^Execution logs:\s*", "", obs_content).strip()
|
| 68 |
if obs_content:
|
| 69 |
-
tool_info_md += f"📝 **Tool Output/Logs:**\n```text\n{obs_content}\n```\n"
|
| 70 |
|
| 71 |
if hasattr(step_log, "error") and step_log.error:
|
| 72 |
tool_info_md += f"💥 **Error:** {str(step_log.error)}\n"
|
|
@@ -105,10 +105,9 @@ def stream_to_gradio(
|
|
| 105 |
agent.interaction_logs.clear()
|
| 106 |
print("DEBUG Gradio: Cleared agent interaction_logs for new run.")
|
| 107 |
|
| 108 |
-
# This will collect all step_log objects from the agent run
|
| 109 |
all_step_logs = []
|
| 110 |
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
|
| 111 |
-
all_step_logs.append(step_log)
|
| 112 |
if hasattr(agent.model, "last_input_token_count") and agent.model.last_input_token_count is not None:
|
| 113 |
if isinstance(step_log, ActionStep):
|
| 114 |
step_log.input_token_count = agent.model.last_input_token_count
|
|
@@ -117,79 +116,58 @@ def stream_to_gradio(
|
|
| 117 |
for msg_dict in pull_messages_from_step_dict(step_log):
|
| 118 |
yield msg_dict
|
| 119 |
|
| 120 |
-
|
| 121 |
-
if not all_step_logs: # Should not happen if agent.run yields at least one thing
|
| 122 |
yield {"role": "assistant", "content": "Agent did not produce any output."}
|
| 123 |
return
|
| 124 |
|
| 125 |
-
final_answer_content = all_step_logs[-1]
|
| 126 |
|
| 127 |
-
# --- Handle final answer for type="messages" ---
|
| 128 |
-
if isinstance(final_answer_content, PILImage.Image):
|
| 129 |
-
print("DEBUG Gradio (stream_to_gradio): Final answer content IS a raw PIL Image.")
|
| 130 |
-
try:
|
| 131 |
-
# delete=False is crucial for Gradio to access the file before it's cleaned up
|
| 132 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
|
| 133 |
-
final_answer_content.save(tmp_file, format="PNG")
|
| 134 |
-
image_path_for_gradio = tmp_file.name
|
| 135 |
-
print(f"DEBUG Gradio: Saved PIL image to temp path for display: {image_path_for_gradio}")
|
| 136 |
-
yield {"role": "assistant", "content": image_path_for_gradio}
|
| 137 |
-
return
|
| 138 |
-
except Exception as e:
|
| 139 |
-
print(f"DEBUG Gradio: Error saving PIL image from final_answer_content: {e}")
|
| 140 |
-
yield {"role": "assistant", "content": f"**Final Answer (Error displaying image):** {e}"}
|
| 141 |
-
return
|
| 142 |
-
|
| 143 |
-
# If not a raw PIL Image, then try smolagents processing from handle_agent_output_types
|
| 144 |
-
# The 'final_answer_content' here could be a FinalAnswerStep object or similar
|
| 145 |
-
# We need to extract the actual content from it if it's a wrapper.
|
| 146 |
actual_content_for_handling = final_answer_content
|
| 147 |
if hasattr(final_answer_content, 'final_answer') and not isinstance(final_answer_content, (str, PILImage.Image)):
|
| 148 |
actual_content_for_handling = final_answer_content.final_answer
|
| 149 |
print(f"DEBUG Gradio: Extracted actual_content_for_handling from FinalAnswerStep: {type(actual_content_for_handling)}")
|
| 150 |
|
| 151 |
-
|
| 152 |
-
# Re-check if the extracted content is a PIL Image
|
| 153 |
if isinstance(actual_content_for_handling, PILImage.Image):
|
| 154 |
-
print("DEBUG Gradio (stream_to_gradio):
|
| 155 |
try:
|
| 156 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
|
| 157 |
actual_content_for_handling.save(tmp_file, format="PNG")
|
| 158 |
image_path_for_gradio = tmp_file.name
|
| 159 |
-
print(f"DEBUG Gradio: Saved
|
| 160 |
-
|
|
|
|
| 161 |
return
|
| 162 |
except Exception as e:
|
| 163 |
print(f"DEBUG Gradio: Error saving extracted PIL image: {e}")
|
| 164 |
-
yield {"role": "assistant", "content": f"**Final Answer (Error displaying image
|
| 165 |
return
|
| 166 |
|
| 167 |
final_answer_processed = handle_agent_output_types(actual_content_for_handling)
|
| 168 |
print(f"DEBUG Gradio: final_answer_processed type after handle_agent_output_types: {type(final_answer_processed)}")
|
| 169 |
|
| 170 |
-
|
| 171 |
if isinstance(final_answer_processed, AgentText):
|
| 172 |
yield {"role": "assistant", "content": f"**Final Answer:**\n{final_answer_processed.to_string()}"}
|
| 173 |
elif isinstance(final_answer_processed, AgentImage):
|
| 174 |
image_path = final_answer_processed.to_string()
|
| 175 |
print(f"DEBUG Gradio (stream_to_gradio): final_answer_processed is AgentImage. Path: {image_path}")
|
| 176 |
if image_path and os.path.exists(image_path):
|
| 177 |
-
|
|
|
|
| 178 |
else:
|
| 179 |
-
err_msg = f"Error: Image path from AgentImage ('{image_path}') not found or invalid
|
| 180 |
print(f"DEBUG Gradio: {err_msg}")
|
| 181 |
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
|
| 182 |
elif isinstance(final_answer_processed, AgentAudio):
|
| 183 |
audio_path = final_answer_processed.to_string()
|
| 184 |
print(f"DEBUG Gradio (stream_to_gradio): AgentAudio path: {audio_path}")
|
| 185 |
if audio_path and os.path.exists(audio_path):
|
| 186 |
-
|
|
|
|
| 187 |
else:
|
| 188 |
err_msg = f"Error: Audio path from AgentAudio ('{audio_path}') not found"
|
| 189 |
print(f"DEBUG Gradio: {err_msg}")
|
| 190 |
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
|
| 191 |
else:
|
| 192 |
-
# This will display the string representation of FinalAnswerStep if not handled above
|
| 193 |
yield {"role": "assistant", "content": f"**Final Answer:**\n{str(final_answer_processed)}"}
|
| 194 |
|
| 195 |
|
|
@@ -211,12 +189,8 @@ class GradioUI:
|
|
| 211 |
for log_entry in reversed(self.agent.interaction_logs):
|
| 212 |
if isinstance(log_entry, ActionStep):
|
| 213 |
observations = getattr(log_entry, 'observations', None)
|
| 214 |
-
tool_calls = getattr(log_entry, 'tool_calls', [])
|
| 215 |
-
|
| 216 |
-
# Check if python_interpreter was used AND its code involved create_document
|
| 217 |
-
# For simplicity, we'll primarily rely on parsing observations for the path pattern
|
| 218 |
if observations and isinstance(observations, str):
|
| 219 |
-
|
| 220 |
path_match = re.search(r"(/tmp/[a-zA-Z0-9_]+/generated_document\.(?:docx|pdf|txt))", observations)
|
| 221 |
if path_match:
|
| 222 |
extracted_path = path_match.group(1)
|
|
@@ -234,7 +208,6 @@ class GradioUI:
|
|
| 234 |
print(f"DEBUG Gradio: interact_with_agent called with prompt: '{prompt_text}'")
|
| 235 |
print(f"DEBUG Gradio: Current chat history (input type {type(current_chat_history)}): {current_chat_history}")
|
| 236 |
|
| 237 |
-
# current_chat_history from gr.Chatbot(type="messages") is already a list of dicts
|
| 238 |
updated_chat_history = current_chat_history + [{"role": "user", "content": prompt_text}]
|
| 239 |
|
| 240 |
yield updated_chat_history, gr.update(visible=False), gr.update(value=None, visible=False)
|
|
@@ -275,7 +248,6 @@ class GradioUI:
|
|
| 275 |
sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)
|
| 276 |
base_name, current_ext = os.path.splitext(sanitized_name)
|
| 277 |
|
| 278 |
-
# Updated mimetypes to extension mapping
|
| 279 |
common_mime_to_ext = {
|
| 280 |
"application/pdf": ".pdf",
|
| 281 |
"application/vnd.openxmlformats-officedocument.wordprocessingml.document": ".docx",
|
|
@@ -302,7 +274,7 @@ class GradioUI:
|
|
| 302 |
if current_file_uploads:
|
| 303 |
files_str = ", ".join([os.path.basename(f) for f in current_file_uploads])
|
| 304 |
full_prompt += f"\n\n[Uploaded files for context: {files_str}]"
|
| 305 |
-
print(f"DEBUG Gradio: Prepared prompt for agent: {full_prompt[:300]}...")
|
| 306 |
return full_prompt, ""
|
| 307 |
|
| 308 |
def prepare_and_show_download_file(self):
|
|
@@ -313,46 +285,44 @@ class GradioUI:
|
|
| 313 |
visible=True)
|
| 314 |
else:
|
| 315 |
print("DEBUG Gradio UI: No valid file path to prepare for download component.")
|
| 316 |
-
|
| 317 |
-
return gr.File.update(visible=False, value=None) # Ensure value is None if not visible
|
| 318 |
|
| 319 |
def launch(self, **kwargs):
|
| 320 |
with gr.Blocks(fill_height=True, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue)) as demo:
|
| 321 |
file_uploads_log_state = gr.State([])
|
| 322 |
prepared_prompt_for_agent = gr.State("")
|
| 323 |
|
| 324 |
-
gr.Markdown("## Smol Talk with your Agent")
|
| 325 |
|
| 326 |
-
with gr.Row(equal_height=False):
|
| 327 |
with gr.Column(scale=3):
|
| 328 |
chatbot_display = gr.Chatbot(
|
| 329 |
label="Agent Interaction",
|
| 330 |
type="messages",
|
| 331 |
avatar_images=(None, "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-round.png"),
|
| 332 |
-
height=700,
|
| 333 |
show_copy_button=True,
|
| 334 |
bubble_full_width=False,
|
| 335 |
-
show_label=False
|
| 336 |
)
|
| 337 |
text_message_input = gr.Textbox(
|
| 338 |
lines=1,
|
| 339 |
label="Your Message to the Agent",
|
| 340 |
placeholder="Type your message and press Enter, or Shift+Enter for new line...",
|
| 341 |
-
show_label=False
|
| 342 |
)
|
| 343 |
|
| 344 |
with gr.Column(scale=1):
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
)
|
| 354 |
|
| 355 |
-
with gr.Accordion("Generated File", open=True):
|
| 356 |
download_action_button = gr.Button("Download Generated File", visible=False)
|
| 357 |
file_download_display_component = gr.File(label="Downloadable Document", visible=False, interactive=False)
|
| 358 |
|
|
@@ -362,8 +332,8 @@ class GradioUI:
|
|
| 362 |
[prepared_prompt_for_agent, text_message_input]
|
| 363 |
).then(
|
| 364 |
self.interact_with_agent,
|
| 365 |
-
[prepared_prompt_for_agent, chatbot_display],
|
| 366 |
-
[chatbot_display, download_action_button, file_download_display_component]
|
| 367 |
)
|
| 368 |
|
| 369 |
download_action_button.click(
|
|
@@ -371,7 +341,6 @@ class GradioUI:
|
|
| 371 |
[],
|
| 372 |
[file_download_display_component]
|
| 373 |
)
|
| 374 |
-
# Default share=False, can be overridden by kwargs
|
| 375 |
demo.launch(debug=True, share=kwargs.get("share", False), **kwargs)
|
| 376 |
|
| 377 |
__all__ = ["stream_to_gradio", "GradioUI"]
|
|
|
|
| 18 |
import re
|
| 19 |
import shutil
|
| 20 |
from typing import Optional
|
| 21 |
+
import tempfile
|
| 22 |
+
from PIL import Image as PILImage
|
| 23 |
|
| 24 |
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
|
| 25 |
from smolagents.agents import ActionStep, MultiStepAgent
|
| 26 |
from smolagents.memory import MemoryStep
|
| 27 |
from smolagents.utils import _is_package_available
|
| 28 |
+
import gradio as gr
|
| 29 |
|
| 30 |
|
| 31 |
def pull_messages_from_step_dict(step_log: MemoryStep):
|
|
|
|
| 66 |
obs_content = step_log.observations.strip()
|
| 67 |
obs_content = re.sub(r"^Execution logs:\s*", "", obs_content).strip()
|
| 68 |
if obs_content:
|
| 69 |
+
tool_info_md += f"📝 **Tool Output/Logs:**\n```text\n{obs_content}\n```\n"
|
| 70 |
|
| 71 |
if hasattr(step_log, "error") and step_log.error:
|
| 72 |
tool_info_md += f"💥 **Error:** {str(step_log.error)}\n"
|
|
|
|
| 105 |
agent.interaction_logs.clear()
|
| 106 |
print("DEBUG Gradio: Cleared agent interaction_logs for new run.")
|
| 107 |
|
|
|
|
| 108 |
all_step_logs = []
|
| 109 |
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
|
| 110 |
+
all_step_logs.append(step_log)
|
| 111 |
if hasattr(agent.model, "last_input_token_count") and agent.model.last_input_token_count is not None:
|
| 112 |
if isinstance(step_log, ActionStep):
|
| 113 |
step_log.input_token_count = agent.model.last_input_token_count
|
|
|
|
| 116 |
for msg_dict in pull_messages_from_step_dict(step_log):
|
| 117 |
yield msg_dict
|
| 118 |
|
| 119 |
+
if not all_step_logs:
|
|
|
|
| 120 |
yield {"role": "assistant", "content": "Agent did not produce any output."}
|
| 121 |
return
|
| 122 |
|
| 123 |
+
final_answer_content = all_step_logs[-1]
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
actual_content_for_handling = final_answer_content
|
| 126 |
if hasattr(final_answer_content, 'final_answer') and not isinstance(final_answer_content, (str, PILImage.Image)):
|
| 127 |
actual_content_for_handling = final_answer_content.final_answer
|
| 128 |
print(f"DEBUG Gradio: Extracted actual_content_for_handling from FinalAnswerStep: {type(actual_content_for_handling)}")
|
| 129 |
|
|
|
|
|
|
|
| 130 |
if isinstance(actual_content_for_handling, PILImage.Image):
|
| 131 |
+
print("DEBUG Gradio (stream_to_gradio): Actual content IS a raw PIL Image.")
|
| 132 |
try:
|
| 133 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
|
| 134 |
actual_content_for_handling.save(tmp_file, format="PNG")
|
| 135 |
image_path_for_gradio = tmp_file.name
|
| 136 |
+
print(f"DEBUG Gradio: Saved PIL image to temp path: {image_path_for_gradio}")
|
| 137 |
+
# MODIFIED: Yield tuple (filepath, alt_text)
|
| 138 |
+
yield {"role": "assistant", "content": (image_path_for_gradio, "Generated Image")}
|
| 139 |
return
|
| 140 |
except Exception as e:
|
| 141 |
print(f"DEBUG Gradio: Error saving extracted PIL image: {e}")
|
| 142 |
+
yield {"role": "assistant", "content": f"**Final Answer (Error displaying image):** {e}"}
|
| 143 |
return
|
| 144 |
|
| 145 |
final_answer_processed = handle_agent_output_types(actual_content_for_handling)
|
| 146 |
print(f"DEBUG Gradio: final_answer_processed type after handle_agent_output_types: {type(final_answer_processed)}")
|
| 147 |
|
|
|
|
| 148 |
if isinstance(final_answer_processed, AgentText):
|
| 149 |
yield {"role": "assistant", "content": f"**Final Answer:**\n{final_answer_processed.to_string()}"}
|
| 150 |
elif isinstance(final_answer_processed, AgentImage):
|
| 151 |
image_path = final_answer_processed.to_string()
|
| 152 |
print(f"DEBUG Gradio (stream_to_gradio): final_answer_processed is AgentImage. Path: {image_path}")
|
| 153 |
if image_path and os.path.exists(image_path):
|
| 154 |
+
# MODIFIED: Yield tuple (filepath, alt_text)
|
| 155 |
+
yield {"role": "assistant", "content": (image_path, "Generated Image (from AgentImage)")}
|
| 156 |
else:
|
| 157 |
+
err_msg = f"Error: Image path from AgentImage ('{image_path}') not found or invalid."
|
| 158 |
print(f"DEBUG Gradio: {err_msg}")
|
| 159 |
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
|
| 160 |
elif isinstance(final_answer_processed, AgentAudio):
|
| 161 |
audio_path = final_answer_processed.to_string()
|
| 162 |
print(f"DEBUG Gradio (stream_to_gradio): AgentAudio path: {audio_path}")
|
| 163 |
if audio_path and os.path.exists(audio_path):
|
| 164 |
+
# MODIFIED: Yield tuple (filepath, alt_text) for consistency, though Gradio might just use path for audio
|
| 165 |
+
yield {"role": "assistant", "content": (audio_path, "Generated Audio")}
|
| 166 |
else:
|
| 167 |
err_msg = f"Error: Audio path from AgentAudio ('{audio_path}') not found"
|
| 168 |
print(f"DEBUG Gradio: {err_msg}")
|
| 169 |
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
|
| 170 |
else:
|
|
|
|
| 171 |
yield {"role": "assistant", "content": f"**Final Answer:**\n{str(final_answer_processed)}"}
|
| 172 |
|
| 173 |
|
|
|
|
| 189 |
for log_entry in reversed(self.agent.interaction_logs):
|
| 190 |
if isinstance(log_entry, ActionStep):
|
| 191 |
observations = getattr(log_entry, 'observations', None)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
if observations and isinstance(observations, str):
|
| 193 |
+
print(f"DEBUG Gradio UI: Checking observations: {observations[:200]}")
|
| 194 |
path_match = re.search(r"(/tmp/[a-zA-Z0-9_]+/generated_document\.(?:docx|pdf|txt))", observations)
|
| 195 |
if path_match:
|
| 196 |
extracted_path = path_match.group(1)
|
|
|
|
| 208 |
print(f"DEBUG Gradio: interact_with_agent called with prompt: '{prompt_text}'")
|
| 209 |
print(f"DEBUG Gradio: Current chat history (input type {type(current_chat_history)}): {current_chat_history}")
|
| 210 |
|
|
|
|
| 211 |
updated_chat_history = current_chat_history + [{"role": "user", "content": prompt_text}]
|
| 212 |
|
| 213 |
yield updated_chat_history, gr.update(visible=False), gr.update(value=None, visible=False)
|
|
|
|
| 248 |
sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)
|
| 249 |
base_name, current_ext = os.path.splitext(sanitized_name)
|
| 250 |
|
|
|
|
| 251 |
common_mime_to_ext = {
|
| 252 |
"application/pdf": ".pdf",
|
| 253 |
"application/vnd.openxmlformats-officedocument.wordprocessingml.document": ".docx",
|
|
|
|
| 274 |
if current_file_uploads:
|
| 275 |
files_str = ", ".join([os.path.basename(f) for f in current_file_uploads])
|
| 276 |
full_prompt += f"\n\n[Uploaded files for context: {files_str}]"
|
| 277 |
+
print(f"DEBUG Gradio: Prepared prompt for agent: {full_prompt[:300]}...")
|
| 278 |
return full_prompt, ""
|
| 279 |
|
| 280 |
def prepare_and_show_download_file(self):
|
|
|
|
| 285 |
visible=True)
|
| 286 |
else:
|
| 287 |
print("DEBUG Gradio UI: No valid file path to prepare for download component.")
|
| 288 |
+
return gr.File.update(visible=False, value=None)
|
|
|
|
| 289 |
|
| 290 |
def launch(self, **kwargs):
|
| 291 |
with gr.Blocks(fill_height=True, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue)) as demo:
|
| 292 |
file_uploads_log_state = gr.State([])
|
| 293 |
prepared_prompt_for_agent = gr.State("")
|
| 294 |
|
| 295 |
+
gr.Markdown("## Smol Talk with your Agent")
|
| 296 |
|
| 297 |
+
with gr.Row(equal_height=False):
|
| 298 |
with gr.Column(scale=3):
|
| 299 |
chatbot_display = gr.Chatbot(
|
| 300 |
label="Agent Interaction",
|
| 301 |
type="messages",
|
| 302 |
avatar_images=(None, "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-round.png"),
|
| 303 |
+
height=700,
|
| 304 |
show_copy_button=True,
|
| 305 |
bubble_full_width=False,
|
| 306 |
+
show_label=False
|
| 307 |
)
|
| 308 |
text_message_input = gr.Textbox(
|
| 309 |
lines=1,
|
| 310 |
label="Your Message to the Agent",
|
| 311 |
placeholder="Type your message and press Enter, or Shift+Enter for new line...",
|
| 312 |
+
show_label=False
|
| 313 |
)
|
| 314 |
|
| 315 |
with gr.Column(scale=1):
|
| 316 |
+
with gr.Accordion("File Upload", open=False):
|
| 317 |
+
file_uploader = gr.File(label="Upload a supporting file (PDF, DOCX, TXT, JPG, PNG)")
|
| 318 |
+
upload_status_text = gr.Textbox(label="Upload Status", interactive=False, lines=1)
|
| 319 |
+
file_uploader.upload(
|
| 320 |
+
self.upload_file,
|
| 321 |
+
[file_uploader, file_uploads_log_state],
|
| 322 |
+
[upload_status_text, file_uploads_log_state],
|
| 323 |
+
)
|
|
|
|
| 324 |
|
| 325 |
+
with gr.Accordion("Generated File", open=True):
|
| 326 |
download_action_button = gr.Button("Download Generated File", visible=False)
|
| 327 |
file_download_display_component = gr.File(label="Downloadable Document", visible=False, interactive=False)
|
| 328 |
|
|
|
|
| 332 |
[prepared_prompt_for_agent, text_message_input]
|
| 333 |
).then(
|
| 334 |
self.interact_with_agent,
|
| 335 |
+
[prepared_prompt_for_agent, chatbot_display],
|
| 336 |
+
[chatbot_display, download_action_button, file_download_display_component]
|
| 337 |
)
|
| 338 |
|
| 339 |
download_action_button.click(
|
|
|
|
| 341 |
[],
|
| 342 |
[file_download_display_component]
|
| 343 |
)
|
|
|
|
| 344 |
demo.launch(debug=True, share=kwargs.get("share", False), **kwargs)
|
| 345 |
|
| 346 |
__all__ = ["stream_to_gradio", "GradioUI"]
|