Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain.llms import OpenAI
|
| 2 |
+
from langchain.agents import AgentType, initialize_agent, load_tools
|
| 3 |
+
from langchain.callbacks import StreamlitCallbackHandler
|
| 4 |
import streamlit as st
|
| 5 |
+
from langchain_community.llms import LlamaCpp
|
| 6 |
+
from langchain_community.tools import HumanInputRun
|
| 7 |
+
from langchain_community.llms import Ollama
|
| 8 |
+
from langchain.agents import AgentExecutor, create_react_agent
|
| 9 |
|
| 10 |
+
#from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext #Vector store index is for indexing the vector
|
| 11 |
+
#from llama_index.llms.huggingface import HuggingFaceLLM
|
| 12 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 13 |
+
# from langchain_huggingface import HuggingFaceEmbeddings
|
| 14 |
+
# from langchain_community.embeddings import HuggingFaceInstructEmbeddings,HuggingFaceEmbeddings
|
| 15 |
+
#from llama_index.core import ServiceContext,Settings
|
| 16 |
+
# from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
| 17 |
+
#from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 18 |
+
import streamlit as st
|
| 19 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 20 |
+
from langchain.vectorstores import FAISS
|
| 21 |
+
from langchain.document_loaders import TextLoader
|
| 22 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 23 |
+
from langchain.llms import OpenAI
|
| 24 |
+
from langchain.chains import RetrievalQA
|
| 25 |
+
|
| 26 |
+
from langchain.chat_models import ChatOpenAI
|
| 27 |
+
from langchain.llms import OpenAI
|
| 28 |
+
from langchain.agents import load_tools, initialize_agent, Tool
|
| 29 |
+
from langchain.tools import HumanInputRun
|
| 30 |
+
from langchain.agents import AgentType
|
| 31 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
| 32 |
+
from langchain_ollama.llms import OllamaLLM
|
| 33 |
+
from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler
|
| 34 |
+
from huggingface_hub import snapshot_download
|
| 35 |
+
from langchain import hub
|
| 36 |
+
import os
|
| 37 |
+
def get_input() -> str:
|
| 38 |
+
if prompt := st.chat_input():
|
| 39 |
+
return prompt
|
| 40 |
+
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
| 41 |
+
download = True
|
| 42 |
+
for file_name in os.listdir("/home/user/app"):
|
| 43 |
+
if "llama-2-7b-chat.Q5_K_S.gguf" in file_name:
|
| 44 |
+
download=False
|
| 45 |
+
if download:
|
| 46 |
+
snapshot_download(repo_id="TheBloke/Llama-2-7B-Chat-GGUF", allow_patterns="*.Q5_K_S.gguf",local_dir="/home/user/app")
|
| 47 |
+
|
| 48 |
+
llm = LlamaCpp(
|
| 49 |
+
model_path="/home/user/app/llama-2-7b-chat.Q5_K_S.gguf",
|
| 50 |
+
n_gpu_layers=-1,
|
| 51 |
+
n_batch=512,
|
| 52 |
+
n_ctx=4096,
|
| 53 |
+
callback_manager=callback_manager,
|
| 54 |
+
verbose=True, # Verbose is required to pass to the callback manager
|
| 55 |
+
)
|
| 56 |
+
# llm = OpenAI(temperature=0, streaming=True)
|
| 57 |
+
embeddings= HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5")
|
| 58 |
+
documents = PyPDFDirectoryLoader("/home/user/app").load()
|
| 59 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
| 60 |
+
texts = text_splitter.split_documents(documents)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
db_pdf = FAISS.from_documents(texts, embeddings)
|
| 64 |
+
db_pdf.save_local("db_pdf")
|
| 65 |
+
print("whats happenings ")
|
| 66 |
+
|
| 67 |
+
# Creating retrieval QA chains
|
| 68 |
+
|
| 69 |
+
db_pdf_retriever = RetrievalQA.from_chain_type(
|
| 70 |
+
llm=llm, chain_type="stuff", retriever=db_pdf.as_retriever()
|
| 71 |
+
)
|
| 72 |
+
db_pdf_tool = Tool(
|
| 73 |
+
name="intellify hr policies tool",
|
| 74 |
+
func=db_pdf_retriever.run,
|
| 75 |
+
description="useful for when you want to answer any questions on the intellify hr policies.",
|
| 76 |
+
return_direct=True
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
human_input = HumanInputRun(input_func=get_input)
|
| 80 |
+
|
| 81 |
+
tools = [
|
| 82 |
+
db_pdf_tool,
|
| 83 |
+
human_input
|
| 84 |
+
]
|
| 85 |
+
prompt = hub.pull("hwchase17/react")
|
| 86 |
+
agent = create_react_agent(llm, tools, prompt)
|
| 87 |
+
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True,handle_parsing_errors=True)
|
| 88 |
+
|
| 89 |
+
# tools = load_tools(["human", ], llm=llm, input_func=get_input)
|
| 90 |
+
# agent = initialize_agent(
|
| 91 |
+
# tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
|
| 92 |
+
# )
|
| 93 |
+
|
| 94 |
+
with st.chat_message("assistant"):
|
| 95 |
+
st_callback = StreamlitCallbackHandler(st.container())
|
| 96 |
+
response = agent_executor.invoke(callbacks=[st_callback])
|
| 97 |
+
st.write(response)
|