Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,7 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
|
4 |
-
|
5 |
import os
|
6 |
-
import json
|
7 |
-
import subprocess
|
8 |
-
import sys
|
9 |
-
from typing import List, Tuple
|
10 |
from llama_cpp import Llama
|
11 |
from llama_cpp_agent import LlamaCppAgent
|
12 |
from llama_cpp_agent import MessagesFormatterType
|
@@ -14,10 +9,16 @@ from llama_cpp_agent.providers import LlamaCppPythonProvider
|
|
14 |
from llama_cpp_agent.chat_history import BasicChatHistory
|
15 |
from llama_cpp_agent.chat_history.messages import Roles
|
16 |
from huggingface_hub import hf_hub_download
|
17 |
-
import
|
|
|
18 |
from logger import logging
|
19 |
from exception import CustomExceptionHandling
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Download gguf model files
|
23 |
if not os.path.exists("./models"):
|
@@ -39,65 +40,33 @@ hf_hub_download(
|
|
39 |
local_dir="./models",
|
40 |
)
|
41 |
|
42 |
-
|
43 |
-
# Set the title and description
|
44 |
-
title = "Dolphin🐬 Llama.cpp"
|
45 |
-
description = """**[Dolphin 3.0](https://huggingface.co/collections/cognitivecomputations/dolphin-30-677ab47f73d7ff66743979a3)** is a powerful, general-purpose local AI model designed for coding, math, and various other tasks, aiming similar to the models like ChatGPT and Claude.
|
46 |
-
This interactive chat interface allows you to experiment with the [`Dolphin3.0-Qwen2.5-0.5B`](https://huggingface.co/cognitivecomputations/Dolphin3.0-Qwen2.5-0.5B) and [`Dolphin3.0-Llama3.2-1B`](https://huggingface.co/cognitivecomputations/Dolphin3.0-Llama3.2-1B) text models using various prompts and generation parameters.
|
47 |
-
Users can select different model variants (GGUF format), system prompts, and observe generated responses in real-time.
|
48 |
-
Key generation parameters, such as `temperature`, `max_tokens`, `top_k` and others are exposed below for tuning model behavior."""
|
49 |
-
|
50 |
-
|
51 |
llm = None
|
52 |
llm_model = None
|
53 |
|
54 |
-
|
55 |
-
message: str
|
56 |
-
history: List[Tuple[str, str]]
|
57 |
-
model: str = "Dolphin3.0-Qwen2.5-0.5B-Q6_K.gguf"
|
58 |
-
system_message: str = "You are a helpful assistant."
|
59 |
-
max_tokens: int = 1024
|
60 |
-
temperature: float = 0.7
|
61 |
-
top_p: float = 0.95
|
62 |
-
top_k: int = 40
|
63 |
-
repeat_penalty: float = 1.1
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
- history (List[Tuple[str, str]]): The chat history.
|
71 |
-
- model (str): The model to use.
|
72 |
-
- system_message (str): The system message to use.
|
73 |
-
- max_tokens (int): The maximum number of tokens to generate.
|
74 |
-
- temperature (float): The temperature of the model.
|
75 |
-
- top_p (float): The top-p of the model.
|
76 |
-
- top_k (int): The top-k of the model.
|
77 |
-
- repeat_penalty (float): The repetition penalty of the model.
|
78 |
-
|
79 |
-
Returns:
|
80 |
-
str: The response to the message.
|
81 |
-
"""
|
82 |
try:
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
# Ensure model is not None
|
88 |
-
if model is None:
|
89 |
-
model = "Dolphin3.0-Qwen2.5-0.5B-Q6_K.gguf"
|
90 |
|
91 |
-
# Load the model
|
92 |
if llm is None or llm_model != model:
|
93 |
-
# Check if model file exists
|
94 |
-
model_path = f"models/{model}"
|
95 |
-
if not os.path.exists(model_path):
|
96 |
-
yield f"Error: Model file not found at {model_path}. Please check your model path."
|
97 |
-
return
|
98 |
-
|
99 |
llm = Llama(
|
100 |
-
model_path=
|
101 |
flash_attn=False,
|
102 |
n_gpu_layers=0,
|
103 |
n_batch=8,
|
@@ -106,140 +75,58 @@ def respond(
|
|
106 |
n_threads_batch=8,
|
107 |
)
|
108 |
llm_model = model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
provider = LlamaCppPythonProvider(llm)
|
110 |
|
111 |
-
# Create
|
112 |
agent = LlamaCppAgent(
|
113 |
provider,
|
114 |
-
system_prompt=
|
115 |
predefined_messages_formatter_type=MessagesFormatterType.CHATML,
|
116 |
debug_output=True,
|
117 |
)
|
118 |
|
119 |
-
# Set
|
120 |
settings = provider.get_provider_default_settings()
|
121 |
-
settings.temperature = temperature
|
122 |
-
settings.top_k = top_k
|
123 |
-
settings.top_p = top_p
|
124 |
-
settings.max_tokens = max_tokens
|
125 |
-
settings.repeat_penalty = repeat_penalty
|
126 |
-
settings.stream =
|
127 |
-
|
|
|
128 |
messages = BasicChatHistory()
|
|
|
|
|
|
|
129 |
|
130 |
-
#
|
131 |
-
|
132 |
-
|
133 |
-
assistant = {"role": Roles.assistant, "content": msn[1]}
|
134 |
-
messages.add_message(user)
|
135 |
-
messages.add_message(assistant)
|
136 |
-
|
137 |
-
# Get the response stream
|
138 |
-
stream = agent.get_chat_response(
|
139 |
-
message,
|
140 |
llm_sampling_settings=settings,
|
141 |
chat_history=messages,
|
142 |
-
returns_streaming_generator=True,
|
143 |
print_output=False,
|
144 |
)
|
145 |
|
146 |
-
|
147 |
-
|
148 |
|
149 |
-
# Generate the response
|
150 |
-
outputs = ""
|
151 |
-
for output in stream:
|
152 |
-
outputs += output
|
153 |
-
yield outputs
|
154 |
-
|
155 |
-
# Handle exceptions that may occur during the process
|
156 |
except Exception as e:
|
157 |
-
# Custom exception handling
|
158 |
raise CustomExceptionHandling(e, sys) from e
|
159 |
|
|
|
|
|
|
|
160 |
|
161 |
-
# Create a chat interface
|
162 |
-
demo = gr.ChatInterface(
|
163 |
-
respond,
|
164 |
-
examples=[["What is the capital of France?"], ["Tell me something about artificial intelligence."], ["What is gravity?"]],
|
165 |
-
additional_inputs_accordion=gr.Accordion(
|
166 |
-
label="⚙️ Parameters", open=False, render=False
|
167 |
-
),
|
168 |
-
additional_inputs=[
|
169 |
-
gr.Dropdown(
|
170 |
-
choices=[
|
171 |
-
"Dolphin3.0-Llama3.2-1B-Q4_K_M.gguf",
|
172 |
-
"Dolphin3.0-Qwen2.5-0.5B-Q6_K.gguf",
|
173 |
-
"Qwen2.5-Coder-14B-Instruct-Q6_K.gguf",
|
174 |
-
],
|
175 |
-
value="Dolphin3.0-Qwen2.5-0.5B-Q6_K.gguf",
|
176 |
-
label="Model",
|
177 |
-
info="Select the AI model to use for chat",
|
178 |
-
),
|
179 |
-
gr.Textbox(
|
180 |
-
value="You are Dolphin, a helpful AI assistant focused on accurate and ethical responses.",
|
181 |
-
label="System Prompt",
|
182 |
-
info="Define the AI assistant's personality and behavior",
|
183 |
-
lines=2,
|
184 |
-
),
|
185 |
-
gr.Slider(
|
186 |
-
minimum=512,
|
187 |
-
maximum=2048,
|
188 |
-
value=1024,
|
189 |
-
step=1,
|
190 |
-
label="Max Tokens",
|
191 |
-
info="Maximum length of response (higher = longer replies)",
|
192 |
-
),
|
193 |
-
gr.Slider(
|
194 |
-
minimum=0.1,
|
195 |
-
maximum=2.0,
|
196 |
-
value=0.7,
|
197 |
-
step=0.1,
|
198 |
-
label="Temperature",
|
199 |
-
info="Creativity level (higher = more creative, lower = more focused)",
|
200 |
-
),
|
201 |
-
gr.Slider(
|
202 |
-
minimum=0.1,
|
203 |
-
maximum=1.0,
|
204 |
-
value=0.95,
|
205 |
-
step=0.05,
|
206 |
-
label="Top-p",
|
207 |
-
info="Nucleus sampling threshold",
|
208 |
-
),
|
209 |
-
gr.Slider(
|
210 |
-
minimum=1,
|
211 |
-
maximum=100,
|
212 |
-
value=40,
|
213 |
-
step=1,
|
214 |
-
label="Top-k",
|
215 |
-
info="Limit vocabulary choices to top K tokens",
|
216 |
-
),
|
217 |
-
gr.Slider(
|
218 |
-
minimum=1.0,
|
219 |
-
maximum=2.0,
|
220 |
-
value=1.1,
|
221 |
-
step=0.1,
|
222 |
-
label="Repetition Penalty",
|
223 |
-
info="Penalize repeated words (higher = less repetition)",
|
224 |
-
),
|
225 |
-
],
|
226 |
-
theme="Ocean",
|
227 |
-
submit_btn="Send",
|
228 |
-
stop_btn="Stop",
|
229 |
-
title=title,
|
230 |
-
description=description,
|
231 |
-
chatbot=gr.Chatbot(scale=1, show_copy_button=True, resizable=True),
|
232 |
-
flagging_mode="never",
|
233 |
-
editable=True,
|
234 |
-
cache_examples=False,
|
235 |
-
)
|
236 |
-
|
237 |
-
|
238 |
-
# Launch the chat interface
|
239 |
if __name__ == "__main__":
|
240 |
-
|
241 |
-
|
242 |
-
server_name="0.0.0.0",
|
243 |
-
server_port=7860,
|
244 |
-
show_api=True,
|
245 |
-
)
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from typing import List, Tuple, Optional
|
|
|
4 |
import os
|
|
|
|
|
|
|
|
|
5 |
from llama_cpp import Llama
|
6 |
from llama_cpp_agent import LlamaCppAgent
|
7 |
from llama_cpp_agent import MessagesFormatterType
|
|
|
9 |
from llama_cpp_agent.chat_history import BasicChatHistory
|
10 |
from llama_cpp_agent.chat_history.messages import Roles
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
+
import logging
|
13 |
+
import sys
|
14 |
from logger import logging
|
15 |
from exception import CustomExceptionHandling
|
16 |
|
17 |
+
app = FastAPI(
|
18 |
+
title="Dolphin Llama.cpp API",
|
19 |
+
description="API for interacting with Dolphin3.0 models using Llama.cpp",
|
20 |
+
version="1.0.0"
|
21 |
+
)
|
22 |
|
23 |
# Download gguf model files
|
24 |
if not os.path.exists("./models"):
|
|
|
40 |
local_dir="./models",
|
41 |
)
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
llm = None
|
44 |
llm_model = None
|
45 |
|
46 |
+
class ChatRequest(BaseModel):
|
47 |
+
message: str
|
48 |
+
history: List[Tuple[str, str]] = []
|
49 |
+
model: str = "Dolphin3.0-Qwen2.5-0.5B-Q6_K.gguf"
|
50 |
+
system_message: str = "You are Dolphin, a helpful AI assistant focused on accurate and ethical responses."
|
51 |
+
max_tokens: int = 1024
|
52 |
+
temperature: float = 0.7
|
53 |
+
top_p: float = 0.95
|
54 |
+
top_k: int = 40
|
55 |
+
repeat_penalty: float = 1.1
|
56 |
+
|
57 |
+
class ChatResponse(BaseModel):
|
58 |
+
response: str
|
59 |
+
|
60 |
+
def initialize_llm(model: str):
|
61 |
+
global llm, llm_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
try:
|
63 |
+
model_path = f"models/{model}"
|
64 |
+
if not os.path.exists(model_path):
|
65 |
+
raise HTTPException(status_code=400, detail=f"Model file not found at {model_path}")
|
|
|
|
|
|
|
|
|
66 |
|
|
|
67 |
if llm is None or llm_model != model:
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
llm = Llama(
|
69 |
+
model_path=model_path,
|
70 |
flash_attn=False,
|
71 |
n_gpu_layers=0,
|
72 |
n_batch=8,
|
|
|
75 |
n_threads_batch=8,
|
76 |
)
|
77 |
llm_model = model
|
78 |
+
return llm
|
79 |
+
except Exception as e:
|
80 |
+
raise CustomExceptionHandling(e, sys) from e
|
81 |
+
|
82 |
+
@app.post("/chat", response_model=ChatResponse)
|
83 |
+
async def chat(request: ChatRequest):
|
84 |
+
try:
|
85 |
+
# Initialize LLM
|
86 |
+
llm = initialize_llm(request.model)
|
87 |
provider = LlamaCppPythonProvider(llm)
|
88 |
|
89 |
+
# Create agent
|
90 |
agent = LlamaCppAgent(
|
91 |
provider,
|
92 |
+
system_prompt=request.system_message,
|
93 |
predefined_messages_formatter_type=MessagesFormatterType.CHATML,
|
94 |
debug_output=True,
|
95 |
)
|
96 |
|
97 |
+
# Set sampling settings
|
98 |
settings = provider.get_provider_default_settings()
|
99 |
+
settings.temperature = request.temperature
|
100 |
+
settings.top_k = request.top_k
|
101 |
+
settings.top_p = request.top_p
|
102 |
+
settings.max_tokens = request.max_tokens
|
103 |
+
settings.repeat_penalty = request.repeat_penalty
|
104 |
+
settings.stream = False
|
105 |
+
|
106 |
+
# Build chat history
|
107 |
messages = BasicChatHistory()
|
108 |
+
for user_msg, assistant_msg in request.history:
|
109 |
+
messages.add_message({"role": Roles.user, "content": user_msg})
|
110 |
+
messages.add_message({"role": Roles.assistant, "content": assistant_msg})
|
111 |
|
112 |
+
# Get response
|
113 |
+
response = agent.get_chat_response(
|
114 |
+
request.message,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
llm_sampling_settings=settings,
|
116 |
chat_history=messages,
|
|
|
117 |
print_output=False,
|
118 |
)
|
119 |
|
120 |
+
logging.info("Response generated successfully")
|
121 |
+
return ChatResponse(response=response)
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
except Exception as e:
|
|
|
124 |
raise CustomExceptionHandling(e, sys) from e
|
125 |
|
126 |
+
@app.get("/health")
|
127 |
+
async def health_check():
|
128 |
+
return {"status": "healthy"}
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
if __name__ == "__main__":
|
131 |
+
import uvicorn
|
132 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|
|
|