Spaces:
Sleeping
Sleeping
File size: 5,868 Bytes
a76ce8c a546822 c41964f b8b26b5 a546822 b8b26b5 c41964f b8b26b5 a546822 c41964f b8b26b5 c41964f b8b26b5 c41964f b8b26b5 c41964f b8b26b5 c41964f b8b26b5 c41964f b8b26b5 a546822 c41964f b8b26b5 c41964f b8b26b5 c41964f b8b26b5 c41964f a546822 b8b26b5 a546822 c41964f b8b26b5 c41964f b8b26b5 c41964f b8b26b5 c41964f b8b26b5 c41964f b8b26b5 c41964f b8b26b5 c41964f a546822 c41964f b8b26b5 c41964f b8b26b5 c41964f a546822 c41964f b8b26b5 c41964f b8b26b5 a546822 c41964f b8b26b5 c41964f b8b26b5 c41964f b8b26b5 c41964f b8b26b5 c41964f a546822 c41964f b8b26b5 c41964f b8b26b5 c41964f b8b26b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, Trainer, TrainingArguments
from datasets import load_dataset, Dataset
import torch
import pandas as pd
from huggingface_hub import notebook_login
from transformers import DataCollatorForSeq2Seq
MODEL_NAME = "microsoft/DialoGPT-small"
DATASET_NAME = "embedding-data/amazon-QA"
FINETUNED_MODEL_NAME = "MujtabaShopifyChatbot"
HF_TOKEN = "your_huggingface_token"
chatbot_pipe = None
def show_dataset_head(dataset, num_rows=5):
print("Displaying dataset preview ", dataset)
if isinstance(dataset, dict):
for split in dataset.keys():
print("Current split ", split)
df = pd.DataFrame(dataset[split][:num_rows])
cols = [col for col in ['query', 'pos', 'question', 'answer'] if col in df.columns]
if cols:
print("Dataset columns ", cols)
def load_and_preprocess_data():
print("Loading dataset from ", DATASET_NAME)
dataset = load_dataset(DATASET_NAME)
show_dataset_head(dataset)
df = pd.DataFrame(dataset['train'])
if 'query' in df.columns and 'pos' in df.columns:
df = df.rename(columns={'query': 'question', 'pos': 'answer'})
elif 'question' not in df.columns or 'answer' not in df.columns:
df = df.rename(columns={df.columns[0]: 'question', df.columns[1]: 'answer'})
df = df[['question', 'answer']].dropna()
df = df[:5000]
df['answer'] = df['answer'].astype(str).str.replace(r'\[\^|\].*', '', regex=True)
processed_dataset = Dataset.from_pandas(df)
show_dataset_head(processed_dataset)
return processed_dataset.train_test_split(test_size=0.1)
def tokenize_data(dataset):
print("Tokenizing data with model ", MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
def preprocess_function(examples):
inputs = [f"question: {q} answer:" for q in examples["question"]]
targets = [str(a) for a in examples["answer"]]
model_inputs = tokenizer(
inputs,
max_length=128,
truncation=True,
padding='max_length'
)
labels = tokenizer(
targets,
max_length=128,
truncation=True,
padding='max_length'
)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
return dataset.map(preprocess_function, batched=True)
def fine_tune_model(tokenized_dataset):
print("Starting fine-tuning process")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
padding='longest',
max_length=128,
pad_to_multiple_of=8
)
training_args = TrainingArguments(
output_dir="./results",
eval_strategy="epoch",
learning_rate=5e-5,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
num_train_epochs=3,
weight_decay=0.01,
save_total_limit=3,
fp16=torch.cuda.is_available(),
push_to_hub=False,
report_to="none",
logging_steps=100,
save_steps=500,
gradient_accumulation_steps=1
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["test"],
data_collator=data_collator,
tokenizer=tokenizer
)
trainer.train()
print("Training completed, saving model")
model.save_pretrained(FINETUNED_MODEL_NAME)
tokenizer.save_pretrained(FINETUNED_MODEL_NAME)
return model
def initialize_chatbot():
global chatbot_pipe
print("Initializing chatbot with model ", FINETUNED_MODEL_NAME)
try:
model = AutoModelForSeq2SeqLM.from_pretrained(FINETUNED_MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(FINETUNED_MODEL_NAME)
chatbot_pipe = pipeline(
"text2text-generation",
model=model,
tokenizer=tokenizer,
device=0 if torch.cuda.is_available() else -1
)
print("Chatbot initialized successfully")
except Exception as e:
print("Error initializing chatbot ", e)
return None
return chatbot_pipe
def generate_response(message, history):
if chatbot_pipe is None:
print("Chatbot pipeline not initialized")
return "System error: Chatbot not ready"
try:
print("Generating response for query ", message)
response = chatbot_pipe(
f"question: {message} answer:",
max_length=128,
do_sample=True,
temperature=0.7,
top_p=0.9
)[0]['generated_text']
final_response = response.split("answer:")[-1].strip()
print("Generated response ", final_response)
return final_response
except Exception as e:
print("Error generating response ", e)
return "Sorry, I encountered an error processing your request"
def deploy_chatbot():
print("Launching chatbot interface")
demo = gr.ChatInterface(
fn=generate_response,
title="Mujtaba's Shopify Assistant",
description="Ask about products, shipping, or store policies",
examples=[
"Will this work with iPhone 15?",
"What's the return window?",
"Do you ship to Lahore?"
],
theme="soft",
cache_examples=False
)
return demo
if __name__ == "__main__":
notebook_login()
dataset = load_and_preprocess_data()
tokenized_data = tokenize_data(dataset)
model = fine_tune_model(tokenized_data)
initialize_chatbot()
deploy_chatbot().launch() |