Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,132 +1,120 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
-
AutoTokenizer,
|
4 |
-
AutoModelForCausalLM,
|
5 |
-
pipeline,
|
6 |
-
Trainer,
|
7 |
-
TrainingArguments,
|
8 |
-
DataCollatorForLanguageModeling
|
9 |
-
)
|
10 |
from datasets import load_dataset, Dataset
|
11 |
import torch
|
12 |
import pandas as pd
|
|
|
13 |
from sklearn.model_selection import train_test_split
|
14 |
|
15 |
-
|
16 |
-
# Configuration
|
17 |
MODEL_NAME = "microsoft/DialoGPT-medium"
|
18 |
DATASET_NAME = "embedding-data/Amazon-QA"
|
19 |
FINETUNED_MODEL_NAME = "MujtabaShopifyChatbot"
|
20 |
-
MAX_LENGTH = 128
|
21 |
-
BATCH_SIZE = 8
|
22 |
|
23 |
chatbot_pipe = None
|
24 |
-
tokenizer = None
|
25 |
|
26 |
def show_dataset_head(dataset, num_rows=5):
|
27 |
-
"
|
28 |
if isinstance(dataset, dict):
|
29 |
for split in dataset.keys():
|
|
|
30 |
df = pd.DataFrame(dataset[split][:num_rows])
|
31 |
-
|
32 |
-
|
|
|
33 |
|
34 |
def load_and_preprocess_data():
|
35 |
-
"
|
36 |
-
print(f"Loading {DATASET_NAME}")
|
37 |
try:
|
38 |
dataset = load_dataset(DATASET_NAME)
|
39 |
show_dataset_head(dataset)
|
40 |
|
41 |
df = pd.DataFrame(dataset['train'])
|
42 |
|
43 |
-
# Column normalization
|
44 |
if 'query' in df.columns and 'pos' in df.columns:
|
45 |
df = df.rename(columns={'query': 'question', 'pos': 'answer'})
|
46 |
elif 'question' not in df.columns or 'answer' not in df.columns:
|
47 |
-
|
48 |
-
df = df.rename(columns={df.columns[0]: 'question', df.columns[1]: 'answer'})
|
49 |
-
else:
|
50 |
-
raise ValueError("Dataset must have at least two columns for question and answer")
|
51 |
|
52 |
-
# Cleaning
|
53 |
df = df[['question', 'answer']].dropna()
|
54 |
-
df = df[
|
55 |
-
|
56 |
-
df = df[
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
return
|
61 |
except Exception as e:
|
62 |
-
print(
|
63 |
raise
|
64 |
|
65 |
-
def tokenize_data(
|
66 |
-
""
|
67 |
-
global tokenizer
|
68 |
-
print(f"Tokenizing with {MODEL_NAME}")
|
69 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
70 |
tokenizer.pad_token = tokenizer.eos_token
|
71 |
|
72 |
def preprocess_function(examples):
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
77 |
truncation=True,
|
78 |
-
padding=
|
79 |
-
return_tensors="pt"
|
80 |
)
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
85 |
|
86 |
-
def fine_tune_model(
|
87 |
-
"
|
88 |
-
|
89 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
training_args = TrainingArguments(
|
92 |
output_dir="./results",
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
num_train_epochs=4,
|
99 |
weight_decay=0.01,
|
100 |
-
|
101 |
fp16=torch.cuda.is_available(),
|
|
|
|
|
102 |
logging_steps=100,
|
103 |
-
save_steps=
|
104 |
-
save_total_limit=2,
|
105 |
-
load_best_model_at_end=True,
|
106 |
-
report_to="none" # Disable W&B logging
|
107 |
)
|
108 |
|
109 |
trainer = Trainer(
|
110 |
model=model,
|
111 |
args=training_args,
|
112 |
-
train_dataset=
|
113 |
-
eval_dataset=
|
114 |
-
data_collator=
|
115 |
)
|
116 |
|
117 |
trainer.train()
|
|
|
118 |
model.save_pretrained(FINETUNED_MODEL_NAME)
|
119 |
tokenizer.save_pretrained(FINETUNED_MODEL_NAME)
|
120 |
return model
|
121 |
|
122 |
def initialize_chatbot():
|
123 |
-
|
124 |
-
|
125 |
-
print(f"Loading {FINETUNED_MODEL_NAME}")
|
126 |
try:
|
|
|
127 |
tokenizer = AutoTokenizer.from_pretrained(FINETUNED_MODEL_NAME)
|
128 |
tokenizer.pad_token = tokenizer.eos_token
|
129 |
-
model = AutoModelForCausalLM.from_pretrained(FINETUNED_MODEL_NAME)
|
130 |
|
131 |
chatbot_pipe = pipeline(
|
132 |
"text-generation",
|
@@ -134,48 +122,54 @@ def initialize_chatbot():
|
|
134 |
tokenizer=tokenizer,
|
135 |
device=0 if torch.cuda.is_available() else -1
|
136 |
)
|
|
|
137 |
except Exception as e:
|
138 |
-
print(
|
139 |
-
|
|
|
140 |
|
141 |
def generate_response(message, history):
|
142 |
-
|
143 |
-
|
144 |
-
return "System
|
145 |
|
146 |
try:
|
|
|
147 |
response = chatbot_pipe(
|
148 |
-
message,
|
149 |
-
max_length=
|
150 |
do_sample=True,
|
151 |
temperature=0.7,
|
152 |
-
|
153 |
-
top_p=0.9,
|
154 |
-
repetition_penalty=1.2,
|
155 |
-
num_return_sequences=1
|
156 |
)[0]['generated_text']
|
157 |
-
|
158 |
-
|
|
|
159 |
except Exception as e:
|
160 |
-
print(
|
161 |
-
return "
|
162 |
|
163 |
def deploy_chatbot():
|
164 |
-
"
|
165 |
demo = gr.ChatInterface(
|
166 |
fn=generate_response,
|
167 |
-
title="Shopify Assistant",
|
|
|
168 |
examples=[
|
169 |
-
"
|
170 |
-
"What's the return
|
171 |
-
"Do you ship
|
172 |
-
]
|
|
|
|
|
173 |
)
|
174 |
return demo
|
175 |
|
176 |
if __name__ == "__main__":
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
180 |
initialize_chatbot()
|
181 |
deploy_chatbot().launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, Trainer, TrainingArguments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from datasets import load_dataset, Dataset
|
4 |
import torch
|
5 |
import pandas as pd
|
6 |
+
from transformers import DataCollatorForLanguageModeling
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
|
|
|
|
|
9 |
MODEL_NAME = "microsoft/DialoGPT-medium"
|
10 |
DATASET_NAME = "embedding-data/Amazon-QA"
|
11 |
FINETUNED_MODEL_NAME = "MujtabaShopifyChatbot"
|
|
|
|
|
12 |
|
13 |
chatbot_pipe = None
|
|
|
14 |
|
15 |
def show_dataset_head(dataset, num_rows=5):
|
16 |
+
print("Displaying dataset preview ", dataset)
|
17 |
if isinstance(dataset, dict):
|
18 |
for split in dataset.keys():
|
19 |
+
print("Current split ", split)
|
20 |
df = pd.DataFrame(dataset[split][:num_rows])
|
21 |
+
cols = [col for col in ['query', 'pos', 'question', 'answer'] if col in df.columns]
|
22 |
+
if cols:
|
23 |
+
print("Dataset columns ", cols)
|
24 |
|
25 |
def load_and_preprocess_data():
|
26 |
+
print("Loading dataset from ", DATASET_NAME)
|
|
|
27 |
try:
|
28 |
dataset = load_dataset(DATASET_NAME)
|
29 |
show_dataset_head(dataset)
|
30 |
|
31 |
df = pd.DataFrame(dataset['train'])
|
32 |
|
|
|
33 |
if 'query' in df.columns and 'pos' in df.columns:
|
34 |
df = df.rename(columns={'query': 'question', 'pos': 'answer'})
|
35 |
elif 'question' not in df.columns or 'answer' not in df.columns:
|
36 |
+
df = df.rename(columns={df.columns[0]: 'question', df.columns[1]: 'answer'})
|
|
|
|
|
|
|
37 |
|
|
|
38 |
df = df[['question', 'answer']].dropna()
|
39 |
+
df = df[:5000]
|
40 |
+
|
41 |
+
df['answer'] = df['answer'].astype(str).str.replace(r'\[\^|\].*', '', regex=True)
|
42 |
|
43 |
+
processed_dataset = Dataset.from_pandas(df)
|
44 |
+
show_dataset_head(processed_dataset)
|
45 |
+
return processed_dataset.train_test_split(test_size=0.1)
|
46 |
except Exception as e:
|
47 |
+
print("Error loading dataset ", e)
|
48 |
raise
|
49 |
|
50 |
+
def tokenize_data(dataset):
|
51 |
+
print("Tokenizing data with model ", MODEL_NAME)
|
|
|
|
|
52 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
53 |
tokenizer.pad_token = tokenizer.eos_token
|
54 |
|
55 |
def preprocess_function(examples):
|
56 |
+
inputs = [f"question: {q} answer: {a}" for q, a in zip(examples["question"], examples["answer"])]
|
57 |
+
|
58 |
+
model_inputs = tokenizer(
|
59 |
+
inputs,
|
60 |
+
max_length=128,
|
61 |
truncation=True,
|
62 |
+
padding='max_length'
|
|
|
63 |
)
|
64 |
|
65 |
+
model_inputs["labels"] = model_inputs["input_ids"].copy()
|
66 |
+
return model_inputs
|
67 |
+
|
68 |
+
return dataset.map(preprocess_function, batched=True)
|
69 |
|
70 |
+
def fine_tune_model(tokenized_dataset):
|
71 |
+
print("Starting fine-tuning process")
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
73 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
74 |
+
tokenizer.pad_token = tokenizer.eos_token
|
75 |
+
|
76 |
+
data_collator = DataCollatorForLanguageModeling(
|
77 |
+
tokenizer=tokenizer,
|
78 |
+
mlm=False
|
79 |
+
)
|
80 |
|
81 |
training_args = TrainingArguments(
|
82 |
output_dir="./results",
|
83 |
+
eval_strategy="epoch",
|
84 |
+
learning_rate=5e-5,
|
85 |
+
per_device_train_batch_size=4,
|
86 |
+
per_device_eval_batch_size=4,
|
87 |
+
num_train_epochs=3,
|
|
|
88 |
weight_decay=0.01,
|
89 |
+
save_total_limit=3,
|
90 |
fp16=torch.cuda.is_available(),
|
91 |
+
push_to_hub=False,
|
92 |
+
report_to="none",
|
93 |
logging_steps=100,
|
94 |
+
save_steps=500
|
|
|
|
|
|
|
95 |
)
|
96 |
|
97 |
trainer = Trainer(
|
98 |
model=model,
|
99 |
args=training_args,
|
100 |
+
train_dataset=tokenized_dataset["train"],
|
101 |
+
eval_dataset=tokenized_dataset["test"],
|
102 |
+
data_collator=data_collator
|
103 |
)
|
104 |
|
105 |
trainer.train()
|
106 |
+
print("Training completed, saving model")
|
107 |
model.save_pretrained(FINETUNED_MODEL_NAME)
|
108 |
tokenizer.save_pretrained(FINETUNED_MODEL_NAME)
|
109 |
return model
|
110 |
|
111 |
def initialize_chatbot():
|
112 |
+
global chatbot_pipe
|
113 |
+
print("Initializing chatbot with model ", FINETUNED_MODEL_NAME)
|
|
|
114 |
try:
|
115 |
+
model = AutoModelForCausalLM.from_pretrained(FINETUNED_MODEL_NAME)
|
116 |
tokenizer = AutoTokenizer.from_pretrained(FINETUNED_MODEL_NAME)
|
117 |
tokenizer.pad_token = tokenizer.eos_token
|
|
|
118 |
|
119 |
chatbot_pipe = pipeline(
|
120 |
"text-generation",
|
|
|
122 |
tokenizer=tokenizer,
|
123 |
device=0 if torch.cuda.is_available() else -1
|
124 |
)
|
125 |
+
print("Chatbot initialized successfully")
|
126 |
except Exception as e:
|
127 |
+
print("Error initializing chatbot ", e)
|
128 |
+
return None
|
129 |
+
return chatbot_pipe
|
130 |
|
131 |
def generate_response(message, history):
|
132 |
+
if chatbot_pipe is None:
|
133 |
+
print("Chatbot pipeline not initialized")
|
134 |
+
return "System error: Chatbot not ready"
|
135 |
|
136 |
try:
|
137 |
+
print("Generating response for query ", message)
|
138 |
response = chatbot_pipe(
|
139 |
+
f"question: {message} answer:",
|
140 |
+
max_length=128,
|
141 |
do_sample=True,
|
142 |
temperature=0.7,
|
143 |
+
top_p=0.9
|
|
|
|
|
|
|
144 |
)[0]['generated_text']
|
145 |
+
final_response = response.split("answer:")[-1].strip()
|
146 |
+
print("Generated response ", final_response)
|
147 |
+
return final_response
|
148 |
except Exception as e:
|
149 |
+
print("Error generating response ", e)
|
150 |
+
return "Sorry, I encountered an error processing your request"
|
151 |
|
152 |
def deploy_chatbot():
|
153 |
+
print("Launching chatbot interface")
|
154 |
demo = gr.ChatInterface(
|
155 |
fn=generate_response,
|
156 |
+
title="Mujtaba's Shopify Assistant",
|
157 |
+
description="Ask about products, shipping, or store policies",
|
158 |
examples=[
|
159 |
+
"Will this work with iPhone 15?",
|
160 |
+
"What's the return window?",
|
161 |
+
"Do you ship to Lahore?"
|
162 |
+
],
|
163 |
+
theme="soft",
|
164 |
+
cache_examples=False
|
165 |
)
|
166 |
return demo
|
167 |
|
168 |
if __name__ == "__main__":
|
169 |
+
dataset = load_and_preprocess_data()
|
170 |
+
tokenized_data = tokenize_data(dataset)
|
171 |
+
|
172 |
+
model = fine_tune_model(tokenized_data)
|
173 |
+
|
174 |
initialize_chatbot()
|
175 |
deploy_chatbot().launch()
|