momo commited on
Commit
b2fc1de
ยท
1 Parent(s): ab9963b
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -14,20 +14,20 @@ model = AutoModelForSequenceClassification.from_pretrained(
14
  num_labels= 15,
15
  problem_type="multi_label_classification"
16
  )
17
- config = AutoConfig.from_pretrained(MODEL_NAME)
18
 
19
  MODEL_BUF = {
20
  "name": MODEL_NAME,
21
  "tokenizer": tokenizer,
22
  "model": model,
23
- "config": config
24
  }
25
 
26
  def change_model_name(name):
27
  MODEL_BUF["name"] = name
28
  MODEL_BUF["tokenizer"] = AutoTokenizer.from_pretrained(name)
29
  MODEL_BUF["model"] = AutoModelForSequenceClassification.from_pretrained(name)
30
- MODEL_BUF["config"] = AutoConfig.from_pretrained(name)
31
 
32
 
33
  def predict(model_name, text):
@@ -36,7 +36,7 @@ def predict(model_name, text):
36
 
37
  tokenizer = MODEL_BUF["tokenizer"]
38
  model = MODEL_BUF["model"]
39
- config = MODEL_BUF["config"]
40
 
41
  unsmile_labels = ["์—ฌ์„ฑ/๊ฐ€์กฑ","๋‚จ์„ฑ","์„ฑ์†Œ์ˆ˜์ž","์ธ์ข…/๊ตญ์ ","์—ฐ๋ น","์ง€์—ญ","์ข…๊ต","๊ธฐํƒ€ ํ˜์˜ค","์•…ํ”Œ/์š•์„ค","clean", 'name', 'number', 'address', 'bank', 'person']
42
  num_labels = len(unsmile_labels)
 
14
  num_labels= 15,
15
  problem_type="multi_label_classification"
16
  )
17
+ # config = AutoConfig.from_pretrained(MODEL_NAME)
18
 
19
  MODEL_BUF = {
20
  "name": MODEL_NAME,
21
  "tokenizer": tokenizer,
22
  "model": model,
23
+ # "config": config
24
  }
25
 
26
  def change_model_name(name):
27
  MODEL_BUF["name"] = name
28
  MODEL_BUF["tokenizer"] = AutoTokenizer.from_pretrained(name)
29
  MODEL_BUF["model"] = AutoModelForSequenceClassification.from_pretrained(name)
30
+ # MODEL_BUF["config"] = AutoConfig.from_pretrained(name)
31
 
32
 
33
  def predict(model_name, text):
 
36
 
37
  tokenizer = MODEL_BUF["tokenizer"]
38
  model = MODEL_BUF["model"]
39
+ # config = MODEL_BUF["config"]
40
 
41
  unsmile_labels = ["์—ฌ์„ฑ/๊ฐ€์กฑ","๋‚จ์„ฑ","์„ฑ์†Œ์ˆ˜์ž","์ธ์ข…/๊ตญ์ ","์—ฐ๋ น","์ง€์—ญ","์ข…๊ต","๊ธฐํƒ€ ํ˜์˜ค","์•…ํ”Œ/์š•์„ค","clean", 'name', 'number', 'address', 'bank', 'person']
42
  num_labels = len(unsmile_labels)