Spaces:
Sleeping
Sleeping
admin
commited on
Commit
Β·
284b9fd
1
Parent(s):
b82980a
upl base
Browse files- .gitignore +10 -0
- app.py +552 -0
- conda.txt +5 -0
- convert.py +91 -0
- model.py +350 -0
- requirements.txt +8 -0
- utils.py +62 -0
- xml2abc.py +0 -0
.gitignore
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*__pycache__*
|
| 2 |
+
output/*
|
| 3 |
+
rename.sh
|
| 4 |
+
test.py
|
| 5 |
+
gpt2-abcmusic/*
|
| 6 |
+
*.pth
|
| 7 |
+
flagged/*
|
| 8 |
+
mscore3/*
|
| 9 |
+
key.txt
|
| 10 |
+
feedbacks/*
|
app.py
ADDED
|
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
import time
|
| 5 |
+
import torch
|
| 6 |
+
import random
|
| 7 |
+
import shutil
|
| 8 |
+
import argparse
|
| 9 |
+
import warnings
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import soundfile as sf
|
| 12 |
+
from transformers import GPT2Config
|
| 13 |
+
from model import Patchilizer, TunesFormer
|
| 14 |
+
from convert import abc2xml, xml2img, xml2, transpose_octaves_abc
|
| 15 |
+
from utils import (
|
| 16 |
+
PATCH_NUM_LAYERS,
|
| 17 |
+
PATCH_LENGTH,
|
| 18 |
+
CHAR_NUM_LAYERS,
|
| 19 |
+
PATCH_SIZE,
|
| 20 |
+
SHARE_WEIGHTS,
|
| 21 |
+
TEMP_DIR,
|
| 22 |
+
WEIGHTS_DIR,
|
| 23 |
+
DEVICE,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_args(parser: argparse.ArgumentParser):
|
| 28 |
+
parser.add_argument(
|
| 29 |
+
"-num_tunes",
|
| 30 |
+
type=int,
|
| 31 |
+
default=1,
|
| 32 |
+
help="the number of independently computed returned tunes",
|
| 33 |
+
)
|
| 34 |
+
parser.add_argument(
|
| 35 |
+
"-max_patch",
|
| 36 |
+
type=int,
|
| 37 |
+
default=128,
|
| 38 |
+
help="integer to define the maximum length in tokens of each tune",
|
| 39 |
+
)
|
| 40 |
+
parser.add_argument(
|
| 41 |
+
"-top_p",
|
| 42 |
+
type=float,
|
| 43 |
+
default=0.8,
|
| 44 |
+
help="float to define the tokens that are within the sample operation of text generation",
|
| 45 |
+
)
|
| 46 |
+
parser.add_argument(
|
| 47 |
+
"-top_k",
|
| 48 |
+
type=int,
|
| 49 |
+
default=8,
|
| 50 |
+
help="integer to define the tokens that are within the sample operation of text generation",
|
| 51 |
+
)
|
| 52 |
+
parser.add_argument(
|
| 53 |
+
"-temperature",
|
| 54 |
+
type=float,
|
| 55 |
+
default=1.2,
|
| 56 |
+
help="the temperature of the sampling operation",
|
| 57 |
+
)
|
| 58 |
+
parser.add_argument("-seed", type=int, default=None, help="seed for randomstate")
|
| 59 |
+
parser.add_argument(
|
| 60 |
+
"-show_control_code",
|
| 61 |
+
type=bool,
|
| 62 |
+
default=False,
|
| 63 |
+
help="whether to show control code",
|
| 64 |
+
)
|
| 65 |
+
return parser.parse_args()
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_abc_key_val(text: str, key="K"):
|
| 69 |
+
pattern = re.escape(key) + r":(.*?)\n"
|
| 70 |
+
match = re.search(pattern, text)
|
| 71 |
+
if match:
|
| 72 |
+
return match.group(1).strip()
|
| 73 |
+
else:
|
| 74 |
+
return None
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def adjust_volume(in_audio: str, dB_change: int):
|
| 78 |
+
y, sr = sf.read(in_audio)
|
| 79 |
+
sf.write(in_audio, y * 10 ** (dB_change / 20), sr)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def generate_music(
|
| 83 |
+
args,
|
| 84 |
+
emo: str,
|
| 85 |
+
weights: str,
|
| 86 |
+
outdir=TEMP_DIR,
|
| 87 |
+
fix_tempo=None,
|
| 88 |
+
fix_pitch=None,
|
| 89 |
+
fix_volume=None,
|
| 90 |
+
):
|
| 91 |
+
patchilizer = Patchilizer()
|
| 92 |
+
patch_config = GPT2Config(
|
| 93 |
+
num_hidden_layers=PATCH_NUM_LAYERS,
|
| 94 |
+
max_length=PATCH_LENGTH,
|
| 95 |
+
max_position_embeddings=PATCH_LENGTH,
|
| 96 |
+
vocab_size=1,
|
| 97 |
+
)
|
| 98 |
+
char_config = GPT2Config(
|
| 99 |
+
num_hidden_layers=CHAR_NUM_LAYERS,
|
| 100 |
+
max_length=PATCH_SIZE,
|
| 101 |
+
max_position_embeddings=PATCH_SIZE,
|
| 102 |
+
vocab_size=128,
|
| 103 |
+
)
|
| 104 |
+
model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS)
|
| 105 |
+
checkpoint = torch.load(weights)
|
| 106 |
+
model.load_state_dict(checkpoint["model"])
|
| 107 |
+
model = model.to(DEVICE)
|
| 108 |
+
model.eval()
|
| 109 |
+
prompt = f"A:{emo}\n"
|
| 110 |
+
tunes = ""
|
| 111 |
+
num_tunes = args.num_tunes
|
| 112 |
+
max_patch = args.max_patch
|
| 113 |
+
top_p = args.top_p
|
| 114 |
+
top_k = args.top_k
|
| 115 |
+
temperature = args.temperature
|
| 116 |
+
seed = args.seed
|
| 117 |
+
show_control_code = args.show_control_code
|
| 118 |
+
print(" Hyper parms ".center(60, "#"), "\n")
|
| 119 |
+
args_dict: dict = vars(args)
|
| 120 |
+
for arg in args_dict.keys():
|
| 121 |
+
print(f"{arg}: {str(args_dict[arg])}")
|
| 122 |
+
|
| 123 |
+
print("\n", " Output tunes ".center(60, "#"))
|
| 124 |
+
start_time = time.time()
|
| 125 |
+
for i in range(num_tunes):
|
| 126 |
+
title = f"T:{emo} Fragment\n"
|
| 127 |
+
artist = f"C:Generated by AI\n"
|
| 128 |
+
tune = f"X:{str(i + 1)}\n{title}{artist}{prompt}"
|
| 129 |
+
lines = re.split(r"(\n)", tune)
|
| 130 |
+
tune = ""
|
| 131 |
+
skip = False
|
| 132 |
+
for line in lines:
|
| 133 |
+
if show_control_code or line[:2] not in ["S:", "B:", "E:"]:
|
| 134 |
+
if not skip:
|
| 135 |
+
print(line, end="")
|
| 136 |
+
tune += line
|
| 137 |
+
|
| 138 |
+
skip = False
|
| 139 |
+
|
| 140 |
+
else:
|
| 141 |
+
skip = True
|
| 142 |
+
|
| 143 |
+
input_patches = torch.tensor(
|
| 144 |
+
[patchilizer.encode(prompt, add_special_patches=True)[:-1]],
|
| 145 |
+
device=DEVICE,
|
| 146 |
+
)
|
| 147 |
+
if tune == "":
|
| 148 |
+
tokens = None
|
| 149 |
+
|
| 150 |
+
else:
|
| 151 |
+
prefix = patchilizer.decode(input_patches[0])
|
| 152 |
+
remaining_tokens = prompt[len(prefix) :]
|
| 153 |
+
tokens = torch.tensor(
|
| 154 |
+
[patchilizer.bos_token_id] + [ord(c) for c in remaining_tokens],
|
| 155 |
+
device=DEVICE,
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
while input_patches.shape[1] < max_patch:
|
| 159 |
+
predicted_patch, seed = model.generate(
|
| 160 |
+
input_patches,
|
| 161 |
+
tokens,
|
| 162 |
+
top_p=top_p,
|
| 163 |
+
top_k=top_k,
|
| 164 |
+
temperature=temperature,
|
| 165 |
+
seed=seed,
|
| 166 |
+
)
|
| 167 |
+
tokens = None
|
| 168 |
+
if predicted_patch[0] != patchilizer.eos_token_id:
|
| 169 |
+
next_bar = patchilizer.decode([predicted_patch])
|
| 170 |
+
if show_control_code or next_bar[:2] not in ["S:", "B:", "E:"]:
|
| 171 |
+
print(next_bar, end="")
|
| 172 |
+
tune += next_bar
|
| 173 |
+
|
| 174 |
+
if next_bar == "":
|
| 175 |
+
break
|
| 176 |
+
|
| 177 |
+
next_bar = remaining_tokens + next_bar
|
| 178 |
+
remaining_tokens = ""
|
| 179 |
+
predicted_patch = torch.tensor(
|
| 180 |
+
patchilizer.bar2patch(next_bar),
|
| 181 |
+
device=DEVICE,
|
| 182 |
+
).unsqueeze(0)
|
| 183 |
+
input_patches = torch.cat(
|
| 184 |
+
[input_patches, predicted_patch.unsqueeze(0)],
|
| 185 |
+
dim=1,
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
else:
|
| 189 |
+
break
|
| 190 |
+
|
| 191 |
+
tunes += f"{tune}\n\n"
|
| 192 |
+
print("\n")
|
| 193 |
+
|
| 194 |
+
# fix tempo
|
| 195 |
+
if fix_tempo != None:
|
| 196 |
+
tempo = f"Q:{fix_tempo}\n"
|
| 197 |
+
|
| 198 |
+
else:
|
| 199 |
+
tempo = f"Q:{random.randint(88, 132)}\n"
|
| 200 |
+
if emo == "Q1":
|
| 201 |
+
tempo = f"Q:{random.randint(160, 184)}\n"
|
| 202 |
+
elif emo == "Q2":
|
| 203 |
+
tempo = f"Q:{random.randint(184, 228)}\n"
|
| 204 |
+
elif emo == "Q3":
|
| 205 |
+
tempo = f"Q:{random.randint(40, 69)}\n"
|
| 206 |
+
elif emo == "Q4":
|
| 207 |
+
tempo = f"Q:{random.randint(40, 69)}\n"
|
| 208 |
+
|
| 209 |
+
Q_val = get_abc_key_val(tunes, "Q")
|
| 210 |
+
if Q_val:
|
| 211 |
+
tunes = tunes.replace(f"Q:{Q_val}\n", "")
|
| 212 |
+
|
| 213 |
+
tunes = tunes.replace(f"A:{emo}\n", tempo)
|
| 214 |
+
# fix mode:major/minor
|
| 215 |
+
mode = "major" if emo == "Q1" or emo == "Q4" else "minor"
|
| 216 |
+
K_val = get_abc_key_val(tunes)
|
| 217 |
+
if mode == "major" and K_val and "m" in K_val:
|
| 218 |
+
tunes = tunes.replace(f"\nK:{K_val}\n", f"\nK:{K_val.split('m')[0]}\n")
|
| 219 |
+
|
| 220 |
+
elif mode == "minor" and K_val and not "m" in K_val:
|
| 221 |
+
tunes = tunes.replace(f"\nK:{K_val}\n", f"\nK:{K_val.lower()}min\n")
|
| 222 |
+
|
| 223 |
+
print("Generation time: {:.2f} seconds".format(time.time() - start_time))
|
| 224 |
+
timestamp = time.strftime("%a_%d_%b_%Y_%H_%M_%S", time.localtime())
|
| 225 |
+
try:
|
| 226 |
+
# fix avg_pitch (octave)
|
| 227 |
+
if fix_pitch != None:
|
| 228 |
+
if fix_pitch:
|
| 229 |
+
tunes, xml = transpose_octaves_abc(
|
| 230 |
+
tunes,
|
| 231 |
+
f"{outdir}/{timestamp}.musicxml",
|
| 232 |
+
fix_pitch,
|
| 233 |
+
)
|
| 234 |
+
tunes = tunes.replace(title + title, title)
|
| 235 |
+
os.rename(xml, f"{outdir}/[{emo}]{timestamp}.musicxml")
|
| 236 |
+
xml = f"{outdir}/[{emo}]{timestamp}.musicxml"
|
| 237 |
+
|
| 238 |
+
else:
|
| 239 |
+
if mode == "minor":
|
| 240 |
+
offset = -12
|
| 241 |
+
if emo == "Q2":
|
| 242 |
+
offset -= 12
|
| 243 |
+
|
| 244 |
+
tunes, xml = transpose_octaves_abc(
|
| 245 |
+
tunes,
|
| 246 |
+
f"{outdir}/{timestamp}.musicxml",
|
| 247 |
+
offset,
|
| 248 |
+
)
|
| 249 |
+
tunes = tunes.replace(title + title, title)
|
| 250 |
+
os.rename(xml, f"{outdir}/[{emo}]{timestamp}.musicxml")
|
| 251 |
+
xml = f"{outdir}/[{emo}]{timestamp}.musicxml"
|
| 252 |
+
|
| 253 |
+
else:
|
| 254 |
+
xml = abc2xml(tunes, f"{outdir}/[{emo}]{timestamp}.musicxml")
|
| 255 |
+
|
| 256 |
+
audio = xml2(xml, "wav")
|
| 257 |
+
if fix_volume != None:
|
| 258 |
+
if fix_volume:
|
| 259 |
+
adjust_volume(audio, fix_volume)
|
| 260 |
+
|
| 261 |
+
elif os.path.exists(audio):
|
| 262 |
+
if emo == "Q1":
|
| 263 |
+
adjust_volume(audio, 5)
|
| 264 |
+
|
| 265 |
+
elif emo == "Q2":
|
| 266 |
+
adjust_volume(audio, 10)
|
| 267 |
+
|
| 268 |
+
mxl = xml2(xml, "mxl")
|
| 269 |
+
midi = xml2(xml, "mid")
|
| 270 |
+
pdf, jpg = xml2img(xml)
|
| 271 |
+
return audio, midi, pdf, xml, mxl, tunes, jpg
|
| 272 |
+
|
| 273 |
+
except Exception as e:
|
| 274 |
+
print(f"{e}")
|
| 275 |
+
return generate_music(args, emo, weights)
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
def inference(dataset: str, v: str, a: str, add_chord: bool):
|
| 279 |
+
if os.path.exists(TEMP_DIR):
|
| 280 |
+
shutil.rmtree(TEMP_DIR)
|
| 281 |
+
|
| 282 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
| 283 |
+
emotion = "Q1"
|
| 284 |
+
if v == "Low" and a == "High":
|
| 285 |
+
emotion = "Q2"
|
| 286 |
+
|
| 287 |
+
elif v == "Low" and a == "Low":
|
| 288 |
+
emotion = "Q3"
|
| 289 |
+
|
| 290 |
+
elif v == "High" and a == "Low":
|
| 291 |
+
emotion = "Q4"
|
| 292 |
+
|
| 293 |
+
parser = argparse.ArgumentParser()
|
| 294 |
+
args = get_args(parser)
|
| 295 |
+
return generate_music(
|
| 296 |
+
args,
|
| 297 |
+
emo=emotion,
|
| 298 |
+
weights=f"{WEIGHTS_DIR}/{dataset.lower()}/weights.pth",
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
def infer(
|
| 303 |
+
dataset: str,
|
| 304 |
+
pitch_std: str,
|
| 305 |
+
mode: str,
|
| 306 |
+
tempo: int,
|
| 307 |
+
octave: int,
|
| 308 |
+
rms: int,
|
| 309 |
+
add_chord: bool,
|
| 310 |
+
):
|
| 311 |
+
if os.path.exists(TEMP_DIR):
|
| 312 |
+
shutil.rmtree(TEMP_DIR)
|
| 313 |
+
|
| 314 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
| 315 |
+
emotion = "Q1"
|
| 316 |
+
if mode == "Minor" and pitch_std == "High":
|
| 317 |
+
emotion = "Q2"
|
| 318 |
+
|
| 319 |
+
elif mode == "Minor" and pitch_std == "Low":
|
| 320 |
+
emotion = "Q3"
|
| 321 |
+
|
| 322 |
+
elif mode == "Major" and pitch_std == "Low":
|
| 323 |
+
emotion = "Q4"
|
| 324 |
+
|
| 325 |
+
parser = argparse.ArgumentParser()
|
| 326 |
+
args = get_args(parser)
|
| 327 |
+
return generate_music(
|
| 328 |
+
args,
|
| 329 |
+
emo=emotion,
|
| 330 |
+
weights=f"{WEIGHTS_DIR}/{dataset.lower()}/weights.pth",
|
| 331 |
+
fix_tempo=tempo,
|
| 332 |
+
fix_pitch=octave,
|
| 333 |
+
fix_volume=rms,
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
def feedback(fixed_emo: str, source_dir="./flagged", target_dir="./feedbacks"):
|
| 338 |
+
if not fixed_emo:
|
| 339 |
+
return "Please select feedback before submitting! "
|
| 340 |
+
|
| 341 |
+
os.makedirs(target_dir, exist_ok=True)
|
| 342 |
+
for root, _, files in os.walk(source_dir):
|
| 343 |
+
for file in files:
|
| 344 |
+
if file.endswith(".mxl"):
|
| 345 |
+
prompt_emo = file.split("]")[0][1:]
|
| 346 |
+
if prompt_emo != fixed_emo:
|
| 347 |
+
file_path = os.path.join(root, file)
|
| 348 |
+
target_path = os.path.join(
|
| 349 |
+
target_dir, file.replace(".mxl", f"_{fixed_emo}.mxl")
|
| 350 |
+
)
|
| 351 |
+
shutil.copy(file_path, target_path)
|
| 352 |
+
return f"Copied {file_path} to {target_path}"
|
| 353 |
+
|
| 354 |
+
else:
|
| 355 |
+
return "Thanks for your feedback!"
|
| 356 |
+
|
| 357 |
+
return "No .mxl files found in the source directory."
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
def save_template(
|
| 361 |
+
label: str,
|
| 362 |
+
pitch_std: str,
|
| 363 |
+
mode: str,
|
| 364 |
+
tempo: int,
|
| 365 |
+
octave: int,
|
| 366 |
+
rms: int,
|
| 367 |
+
):
|
| 368 |
+
if (
|
| 369 |
+
label
|
| 370 |
+
and pitch_std
|
| 371 |
+
and mode
|
| 372 |
+
and tempo != None
|
| 373 |
+
and octave != None
|
| 374 |
+
and rms != None
|
| 375 |
+
):
|
| 376 |
+
json_str = json.dumps(
|
| 377 |
+
{
|
| 378 |
+
"label": label,
|
| 379 |
+
"pitch_std": pitch_std == "High",
|
| 380 |
+
"mode": mode == "Major",
|
| 381 |
+
"tempo": tempo,
|
| 382 |
+
"octave": octave,
|
| 383 |
+
"volume": rms,
|
| 384 |
+
}
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
with open("./feedbacks/templates.jsonl", "a", encoding="utf-8") as file:
|
| 388 |
+
file.write(json_str + "\n")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
if __name__ == "__main__":
|
| 392 |
+
warnings.filterwarnings("ignore")
|
| 393 |
+
if os.path.exists("./flagged"):
|
| 394 |
+
shutil.rmtree("./flagged")
|
| 395 |
+
|
| 396 |
+
with gr.Blocks() as demo:
|
| 397 |
+
with gr.Row():
|
| 398 |
+
with gr.Column():
|
| 399 |
+
dataset_option = gr.Dropdown(
|
| 400 |
+
["VGMIDI", "EMOPIA", "Rough4Q"],
|
| 401 |
+
label="Dataset",
|
| 402 |
+
value="Rough4Q",
|
| 403 |
+
)
|
| 404 |
+
gr.Markdown(
|
| 405 |
+
"# Generate by emotion condition<br><img width='100%' src='https://www.modelscope.cn/studio/monetjoe/EMusicGen/resolve/master/4q.jpg'>"
|
| 406 |
+
)
|
| 407 |
+
valence_radio = gr.Radio(
|
| 408 |
+
["Low", "High"],
|
| 409 |
+
label="Valence (reflects negative-positive levels of emotion)",
|
| 410 |
+
value="High",
|
| 411 |
+
)
|
| 412 |
+
arousal_radio = gr.Radio(
|
| 413 |
+
["Low", "High"],
|
| 414 |
+
label="Arousal (reflects the calmness-intensity of the emotion)",
|
| 415 |
+
value="High",
|
| 416 |
+
)
|
| 417 |
+
chord_check = gr.Checkbox(
|
| 418 |
+
label="Generate chords",
|
| 419 |
+
value=False,
|
| 420 |
+
)
|
| 421 |
+
gen_btn = gr.Button("Generate")
|
| 422 |
+
gr.Markdown("# Generate by feature control")
|
| 423 |
+
std_option = gr.Radio(
|
| 424 |
+
["Low", "High"],
|
| 425 |
+
label="Pitch SD",
|
| 426 |
+
value="High",
|
| 427 |
+
)
|
| 428 |
+
mode_option = gr.Radio(
|
| 429 |
+
["Minor", "Major"],
|
| 430 |
+
label="Mode",
|
| 431 |
+
value="Major",
|
| 432 |
+
)
|
| 433 |
+
tempo_option = gr.Slider(
|
| 434 |
+
minimum=40,
|
| 435 |
+
maximum=228,
|
| 436 |
+
step=1,
|
| 437 |
+
value=120,
|
| 438 |
+
label="Tempo (BPM)",
|
| 439 |
+
)
|
| 440 |
+
octave_option = gr.Slider(
|
| 441 |
+
minimum=-24,
|
| 442 |
+
maximum=24,
|
| 443 |
+
step=12,
|
| 444 |
+
value=0,
|
| 445 |
+
label="Octave (Β±12)",
|
| 446 |
+
)
|
| 447 |
+
volume_option = gr.Slider(
|
| 448 |
+
minimum=-5,
|
| 449 |
+
maximum=10,
|
| 450 |
+
step=5,
|
| 451 |
+
value=0,
|
| 452 |
+
label="Volume (dB)",
|
| 453 |
+
)
|
| 454 |
+
chord_check_2 = gr.Checkbox(
|
| 455 |
+
label="Generate chords",
|
| 456 |
+
value=False,
|
| 457 |
+
)
|
| 458 |
+
gen_btn_2 = gr.Button("Generate")
|
| 459 |
+
template_radio = gr.Radio(
|
| 460 |
+
["Q1", "Q2", "Q3", "Q4"],
|
| 461 |
+
label="The emotion to which the current template belongs",
|
| 462 |
+
)
|
| 463 |
+
save_btn = gr.Button("Save template")
|
| 464 |
+
gr.Markdown(
|
| 465 |
+
"""
|
| 466 |
+
## Cite
|
| 467 |
+
```bibtex
|
| 468 |
+
@article{Zhou2024EMusicGen,
|
| 469 |
+
title = {EMusicGen: Emotion-Conditioned Melody Generation in ABC Notation},
|
| 470 |
+
author = {Monan Zhou, Xiaobing Li, Feng Yu and Wei Li},
|
| 471 |
+
month = {Sep},
|
| 472 |
+
year = {2024},
|
| 473 |
+
publisher = {GitHub},
|
| 474 |
+
version = {0.1},
|
| 475 |
+
url = {https://github.com/monetjoe/EMusicGen}
|
| 476 |
+
}
|
| 477 |
+
```
|
| 478 |
+
"""
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
with gr.Column():
|
| 482 |
+
wav_audio = gr.Audio(label="Audio", type="filepath")
|
| 483 |
+
midi_file = gr.File(label="Download MIDI")
|
| 484 |
+
pdf_file = gr.File(label="Download PDF score")
|
| 485 |
+
xml_file = gr.File(label="Download MusicXML")
|
| 486 |
+
mxl_file = gr.File(label="Download MXL")
|
| 487 |
+
abc_textbox = gr.Textbox(
|
| 488 |
+
label="ABC notation",
|
| 489 |
+
show_copy_button=True,
|
| 490 |
+
)
|
| 491 |
+
staff_img = gr.Image(label="Staff", type="filepath")
|
| 492 |
+
|
| 493 |
+
with gr.Row():
|
| 494 |
+
gr.Interface(
|
| 495 |
+
fn=feedback,
|
| 496 |
+
inputs=gr.Radio(
|
| 497 |
+
["Q1", "Q2", "Q3", "Q4"],
|
| 498 |
+
label="Feedback: the emotion you believe the generated result should belong to",
|
| 499 |
+
),
|
| 500 |
+
outputs=gr.Textbox(show_copy_button=False, show_label=False),
|
| 501 |
+
allow_flagging="never",
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
gen_btn.click(
|
| 505 |
+
fn=inference,
|
| 506 |
+
inputs=[dataset_option, valence_radio, arousal_radio, chord_check],
|
| 507 |
+
outputs=[
|
| 508 |
+
wav_audio,
|
| 509 |
+
midi_file,
|
| 510 |
+
pdf_file,
|
| 511 |
+
xml_file,
|
| 512 |
+
mxl_file,
|
| 513 |
+
abc_textbox,
|
| 514 |
+
staff_img,
|
| 515 |
+
],
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
gen_btn_2.click(
|
| 519 |
+
fn=infer,
|
| 520 |
+
inputs=[
|
| 521 |
+
dataset_option,
|
| 522 |
+
std_option,
|
| 523 |
+
mode_option,
|
| 524 |
+
tempo_option,
|
| 525 |
+
octave_option,
|
| 526 |
+
volume_option,
|
| 527 |
+
chord_check,
|
| 528 |
+
],
|
| 529 |
+
outputs=[
|
| 530 |
+
wav_audio,
|
| 531 |
+
midi_file,
|
| 532 |
+
pdf_file,
|
| 533 |
+
xml_file,
|
| 534 |
+
mxl_file,
|
| 535 |
+
abc_textbox,
|
| 536 |
+
staff_img,
|
| 537 |
+
],
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
save_btn.click(
|
| 541 |
+
fn=save_template,
|
| 542 |
+
inputs=[
|
| 543 |
+
template_radio,
|
| 544 |
+
std_option,
|
| 545 |
+
mode_option,
|
| 546 |
+
tempo_option,
|
| 547 |
+
octave_option,
|
| 548 |
+
volume_option,
|
| 549 |
+
],
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
demo.launch()
|
conda.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python=3.10
|
| 2 |
+
pytorch=1.12.1
|
| 3 |
+
torchvision=0.13.1
|
| 4 |
+
torchaudio=0.12.1
|
| 5 |
+
cudatoolkit=11.3.1
|
convert.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import fitz
|
| 3 |
+
import subprocess
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from music21 import converter, interval, clef, stream
|
| 6 |
+
from utils import MSCORE
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def abc2xml(abc_content, output_xml_path):
|
| 10 |
+
score = converter.parse(abc_content, format="abc")
|
| 11 |
+
score.write("musicxml", fp=output_xml_path, encoding="utf-8")
|
| 12 |
+
return output_xml_path
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def xml2(xml_path: str, target_fmt: str):
|
| 16 |
+
src_fmt = os.path.basename(xml_path).split(".")[-1]
|
| 17 |
+
if not "." in target_fmt:
|
| 18 |
+
target_fmt = "." + target_fmt
|
| 19 |
+
|
| 20 |
+
target_file = xml_path.replace(f".{src_fmt}", target_fmt)
|
| 21 |
+
print(subprocess.run([MSCORE, "-o", target_file, xml_path]))
|
| 22 |
+
return target_file
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def pdf2img(pdf_path: str):
|
| 26 |
+
output_path = pdf_path.replace(".pdf", ".jpg")
|
| 27 |
+
doc = fitz.open(pdf_path)
|
| 28 |
+
# εε»ΊδΈδΈͺεΎεε葨
|
| 29 |
+
images = []
|
| 30 |
+
for page_number in range(doc.page_count):
|
| 31 |
+
page = doc[page_number]
|
| 32 |
+
# ε°ι‘΅ι’ζΈ²ζδΈΊεΎε
|
| 33 |
+
image = page.get_pixmap()
|
| 34 |
+
# ε°εΎεζ·»ε ε°ε葨
|
| 35 |
+
images.append(
|
| 36 |
+
Image.frombytes("RGB", [image.width, image.height], image.samples)
|
| 37 |
+
)
|
| 38 |
+
# η«εεεΉΆεΎε
|
| 39 |
+
merged_image = Image.new(
|
| 40 |
+
"RGB", (images[0].width, sum(image.height for image in images))
|
| 41 |
+
)
|
| 42 |
+
y_offset = 0
|
| 43 |
+
for image in images:
|
| 44 |
+
merged_image.paste(image, (0, y_offset))
|
| 45 |
+
y_offset += image.height
|
| 46 |
+
# δΏεεεΉΆεηεΎεδΈΊJPG
|
| 47 |
+
merged_image.save(output_path, "JPEG")
|
| 48 |
+
# ε
³ιPDFζζ‘£
|
| 49 |
+
doc.close()
|
| 50 |
+
return output_path
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def xml2img(xml_file: str):
|
| 54 |
+
ext = os.path.basename(xml_file).split(".")[-1]
|
| 55 |
+
pdf_score = xml_file.replace(f".{ext}", ".pdf")
|
| 56 |
+
command = [MSCORE, "-o", pdf_score, xml_file]
|
| 57 |
+
result = subprocess.run(command)
|
| 58 |
+
print(result)
|
| 59 |
+
return pdf_score, pdf2img(pdf_score)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# xml to abc
|
| 63 |
+
def xml2abc(input_xml_file: str):
|
| 64 |
+
result = subprocess.run(
|
| 65 |
+
["python", "-Xfrozen_modules=off", "./xml2abc.py", input_xml_file],
|
| 66 |
+
stdout=subprocess.PIPE,
|
| 67 |
+
text=True,
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
if result.returncode == 0:
|
| 71 |
+
return str(result.stdout).strip()
|
| 72 |
+
|
| 73 |
+
return ""
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def transpose_octaves_abc(abc_notation: str, out_xml_file: str, offset=-12):
|
| 77 |
+
score = converter.parse(abc_notation)
|
| 78 |
+
if offset < 0:
|
| 79 |
+
for part in score.parts:
|
| 80 |
+
for measure in part.getElementsByClass(stream.Measure):
|
| 81 |
+
# ζ£ζ₯ε½εε°θηθ°±ε·
|
| 82 |
+
if measure.clef:
|
| 83 |
+
measure.clef = clef.BassClef()
|
| 84 |
+
|
| 85 |
+
octaves_interval = interval.Interval(offset)
|
| 86 |
+
# ιεζ―δΈͺι³η¬¦οΌε°ε
ΆδΈδΈη§»ε
«εΊ¦
|
| 87 |
+
for note in score.recurse().notes:
|
| 88 |
+
note.transpose(octaves_interval, inPlace=True)
|
| 89 |
+
|
| 90 |
+
score.write("musicxml", fp=out_xml_file)
|
| 91 |
+
return xml2abc(out_xml_file), out_xml_file
|
model.py
ADDED
|
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import torch
|
| 3 |
+
import random
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
from unidecode import unidecode
|
| 6 |
+
from torch.utils.data import Dataset
|
| 7 |
+
from transformers import GPT2Model, GPT2LMHeadModel, PreTrainedModel
|
| 8 |
+
from samplings import top_p_sampling, top_k_sampling, temperature_sampling
|
| 9 |
+
from utils import PATCH_SIZE, PATCH_LENGTH, PATCH_SAMPLING_BATCH_SIZE
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class Patchilizer:
|
| 13 |
+
"""
|
| 14 |
+
A class for converting music bars to patches and vice versa.
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
def __init__(self):
|
| 18 |
+
self.delimiters = ["|:", "::", ":|", "[|", "||", "|]", "|"]
|
| 19 |
+
self.regexPattern = f"({'|'.join(map(re.escape, self.delimiters))})"
|
| 20 |
+
self.pad_token_id = 0
|
| 21 |
+
self.bos_token_id = 1
|
| 22 |
+
self.eos_token_id = 2
|
| 23 |
+
|
| 24 |
+
def split_bars(self, body):
|
| 25 |
+
"""
|
| 26 |
+
Split a body of music into individual bars.
|
| 27 |
+
"""
|
| 28 |
+
bars = re.split(self.regexPattern, "".join(body))
|
| 29 |
+
bars = list(filter(None, bars))
|
| 30 |
+
# remove empty strings
|
| 31 |
+
if bars[0] in self.delimiters:
|
| 32 |
+
bars[1] = bars[0] + bars[1]
|
| 33 |
+
bars = bars[1:]
|
| 34 |
+
|
| 35 |
+
bars = [bars[i * 2] + bars[i * 2 + 1] for i in range(len(bars) // 2)]
|
| 36 |
+
return bars
|
| 37 |
+
|
| 38 |
+
def bar2patch(self, bar, patch_size=PATCH_SIZE):
|
| 39 |
+
"""
|
| 40 |
+
Convert a bar into a patch of specified length.
|
| 41 |
+
"""
|
| 42 |
+
patch = [self.bos_token_id] + [ord(c) for c in bar] + [self.eos_token_id]
|
| 43 |
+
patch = patch[:patch_size]
|
| 44 |
+
patch += [self.pad_token_id] * (patch_size - len(patch))
|
| 45 |
+
return patch
|
| 46 |
+
|
| 47 |
+
def patch2bar(self, patch):
|
| 48 |
+
"""
|
| 49 |
+
Convert a patch into a bar.
|
| 50 |
+
"""
|
| 51 |
+
return "".join(
|
| 52 |
+
chr(idx) if idx > self.eos_token_id else ""
|
| 53 |
+
for idx in patch
|
| 54 |
+
if idx != self.eos_token_id
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
def encode(
|
| 58 |
+
self,
|
| 59 |
+
abc_code,
|
| 60 |
+
patch_length=PATCH_LENGTH,
|
| 61 |
+
patch_size=PATCH_SIZE,
|
| 62 |
+
add_special_patches=False,
|
| 63 |
+
):
|
| 64 |
+
"""
|
| 65 |
+
Encode music into patches of specified length.
|
| 66 |
+
"""
|
| 67 |
+
lines = unidecode(abc_code).split("\n")
|
| 68 |
+
lines = list(filter(None, lines)) # remove empty lines
|
| 69 |
+
|
| 70 |
+
body = ""
|
| 71 |
+
patches = []
|
| 72 |
+
|
| 73 |
+
for line in lines:
|
| 74 |
+
if len(line) > 1 and (
|
| 75 |
+
(line[0].isalpha() and line[1] == ":") or line.startswith("%%score")
|
| 76 |
+
):
|
| 77 |
+
if body:
|
| 78 |
+
bars = self.split_bars(body)
|
| 79 |
+
patches.extend(
|
| 80 |
+
self.bar2patch(
|
| 81 |
+
bar + "\n" if idx == len(bars) - 1 else bar, patch_size
|
| 82 |
+
)
|
| 83 |
+
for idx, bar in enumerate(bars)
|
| 84 |
+
)
|
| 85 |
+
body = ""
|
| 86 |
+
|
| 87 |
+
patches.append(self.bar2patch(line + "\n", patch_size))
|
| 88 |
+
|
| 89 |
+
else:
|
| 90 |
+
body += line + "\n"
|
| 91 |
+
|
| 92 |
+
if body:
|
| 93 |
+
patches.extend(
|
| 94 |
+
self.bar2patch(bar, patch_size) for bar in self.split_bars(body)
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
if add_special_patches:
|
| 98 |
+
bos_patch = [self.bos_token_id] * (patch_size - 1) + [self.eos_token_id]
|
| 99 |
+
eos_patch = [self.bos_token_id] + [self.eos_token_id] * (patch_size - 1)
|
| 100 |
+
patches = [bos_patch] + patches + [eos_patch]
|
| 101 |
+
|
| 102 |
+
return patches[:patch_length]
|
| 103 |
+
|
| 104 |
+
def decode(self, patches):
|
| 105 |
+
"""
|
| 106 |
+
Decode patches into music.
|
| 107 |
+
"""
|
| 108 |
+
return "".join(self.patch2bar(patch) for patch in patches)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class PatchLevelDecoder(PreTrainedModel):
|
| 112 |
+
"""
|
| 113 |
+
An Patch-level Decoder model for generating patch features in an auto-regressive manner.
|
| 114 |
+
It inherits PreTrainedModel from transformers.
|
| 115 |
+
"""
|
| 116 |
+
|
| 117 |
+
def __init__(self, config):
|
| 118 |
+
super().__init__(config)
|
| 119 |
+
self.patch_embedding = torch.nn.Linear(PATCH_SIZE * 128, config.n_embd)
|
| 120 |
+
torch.nn.init.normal_(self.patch_embedding.weight, std=0.02)
|
| 121 |
+
self.base = GPT2Model(config)
|
| 122 |
+
|
| 123 |
+
def forward(self, patches: torch.Tensor) -> torch.Tensor:
|
| 124 |
+
"""
|
| 125 |
+
The forward pass of the patch-level decoder model.
|
| 126 |
+
:param patches: the patches to be encoded
|
| 127 |
+
:return: the encoded patches
|
| 128 |
+
"""
|
| 129 |
+
patches = torch.nn.functional.one_hot(patches, num_classes=128).float()
|
| 130 |
+
patches = patches.reshape(len(patches), -1, PATCH_SIZE * 128)
|
| 131 |
+
patches = self.patch_embedding(patches.to(self.device))
|
| 132 |
+
|
| 133 |
+
return self.base(inputs_embeds=patches)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class CharLevelDecoder(PreTrainedModel):
|
| 137 |
+
"""
|
| 138 |
+
A Char-level Decoder model for generating the characters within each bar patch sequentially.
|
| 139 |
+
It inherits PreTrainedModel from transformers.
|
| 140 |
+
"""
|
| 141 |
+
|
| 142 |
+
def __init__(self, config):
|
| 143 |
+
super().__init__(config)
|
| 144 |
+
self.pad_token_id = 0
|
| 145 |
+
self.bos_token_id = 1
|
| 146 |
+
self.eos_token_id = 2
|
| 147 |
+
self.base = GPT2LMHeadModel(config)
|
| 148 |
+
|
| 149 |
+
def forward(
|
| 150 |
+
self,
|
| 151 |
+
encoded_patches: torch.Tensor,
|
| 152 |
+
target_patches: torch.Tensor,
|
| 153 |
+
patch_sampling_batch_size: int,
|
| 154 |
+
):
|
| 155 |
+
"""
|
| 156 |
+
The forward pass of the char-level decoder model.
|
| 157 |
+
:param encoded_patches: the encoded patches
|
| 158 |
+
:param target_patches: the target patches
|
| 159 |
+
:return: the decoded patches
|
| 160 |
+
"""
|
| 161 |
+
# preparing the labels for model training
|
| 162 |
+
target_masks = target_patches == self.pad_token_id
|
| 163 |
+
labels = target_patches.clone().masked_fill_(target_masks, -100)
|
| 164 |
+
|
| 165 |
+
# masking the labels for model training
|
| 166 |
+
target_masks = torch.ones_like(labels)
|
| 167 |
+
target_masks = target_masks.masked_fill_(labels == -100, 0)
|
| 168 |
+
|
| 169 |
+
# select patches
|
| 170 |
+
if (
|
| 171 |
+
patch_sampling_batch_size != 0
|
| 172 |
+
and patch_sampling_batch_size < target_patches.shape[0]
|
| 173 |
+
):
|
| 174 |
+
indices = list(range(len(target_patches)))
|
| 175 |
+
random.shuffle(indices)
|
| 176 |
+
selected_indices = sorted(indices[:patch_sampling_batch_size])
|
| 177 |
+
|
| 178 |
+
target_patches = target_patches[selected_indices, :]
|
| 179 |
+
target_masks = target_masks[selected_indices, :]
|
| 180 |
+
encoded_patches = encoded_patches[selected_indices, :]
|
| 181 |
+
labels = labels[selected_indices, :]
|
| 182 |
+
|
| 183 |
+
# get input embeddings
|
| 184 |
+
inputs_embeds = torch.nn.functional.embedding(
|
| 185 |
+
target_patches, self.base.transformer.wte.weight
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
# concatenate the encoded patches with the input embeddings
|
| 189 |
+
inputs_embeds = torch.cat(
|
| 190 |
+
(encoded_patches.unsqueeze(1), inputs_embeds[:, 1:, :]), dim=1
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
return self.base(
|
| 194 |
+
inputs_embeds=inputs_embeds, attention_mask=target_masks, labels=labels
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
def generate(self, encoded_patch: torch.Tensor, tokens: torch.Tensor):
|
| 198 |
+
"""
|
| 199 |
+
The generate function for generating a patch based on the encoded patch and already generated tokens.
|
| 200 |
+
:param encoded_patch: the encoded patch
|
| 201 |
+
:param tokens: already generated tokens in the patch
|
| 202 |
+
:return: the probability distribution of next token
|
| 203 |
+
"""
|
| 204 |
+
encoded_patch = encoded_patch.reshape(1, 1, -1)
|
| 205 |
+
tokens = tokens.reshape(1, -1)
|
| 206 |
+
|
| 207 |
+
# Get input embeddings
|
| 208 |
+
tokens = torch.nn.functional.embedding(tokens, self.base.transformer.wte.weight)
|
| 209 |
+
|
| 210 |
+
# Concatenate the encoded patch with the input embeddings
|
| 211 |
+
tokens = torch.cat((encoded_patch, tokens[:, 1:, :]), dim=1)
|
| 212 |
+
|
| 213 |
+
# Get output from model
|
| 214 |
+
outputs = self.base(inputs_embeds=tokens)
|
| 215 |
+
|
| 216 |
+
# Get probabilities of next token
|
| 217 |
+
probs = torch.nn.functional.softmax(outputs.logits.squeeze(0)[-1], dim=-1)
|
| 218 |
+
|
| 219 |
+
return probs
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
class TunesFormer(PreTrainedModel):
|
| 223 |
+
"""
|
| 224 |
+
TunesFormer is a hierarchical music generation model based on bar patching.
|
| 225 |
+
It includes a patch-level decoder and a character-level decoder.
|
| 226 |
+
It inherits PreTrainedModel from transformers.
|
| 227 |
+
"""
|
| 228 |
+
|
| 229 |
+
def __init__(self, encoder_config, decoder_config, share_weights=False):
|
| 230 |
+
super().__init__(encoder_config)
|
| 231 |
+
self.pad_token_id = 0
|
| 232 |
+
self.bos_token_id = 1
|
| 233 |
+
self.eos_token_id = 2
|
| 234 |
+
if share_weights:
|
| 235 |
+
max_layers = max(
|
| 236 |
+
encoder_config.num_hidden_layers, decoder_config.num_hidden_layers
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
max_context_size = max(encoder_config.max_length, decoder_config.max_length)
|
| 240 |
+
|
| 241 |
+
max_position_embeddings = max(
|
| 242 |
+
encoder_config.max_position_embeddings,
|
| 243 |
+
decoder_config.max_position_embeddings,
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
encoder_config.num_hidden_layers = max_layers
|
| 247 |
+
encoder_config.max_length = max_context_size
|
| 248 |
+
encoder_config.max_position_embeddings = max_position_embeddings
|
| 249 |
+
decoder_config.num_hidden_layers = max_layers
|
| 250 |
+
decoder_config.max_length = max_context_size
|
| 251 |
+
decoder_config.max_position_embeddings = max_position_embeddings
|
| 252 |
+
|
| 253 |
+
self.patch_level_decoder = PatchLevelDecoder(encoder_config)
|
| 254 |
+
self.char_level_decoder = CharLevelDecoder(decoder_config)
|
| 255 |
+
|
| 256 |
+
if share_weights:
|
| 257 |
+
self.patch_level_decoder.base = self.char_level_decoder.base.transformer
|
| 258 |
+
|
| 259 |
+
def forward(
|
| 260 |
+
self,
|
| 261 |
+
patches: torch.Tensor,
|
| 262 |
+
patch_sampling_batch_size: int = PATCH_SAMPLING_BATCH_SIZE,
|
| 263 |
+
):
|
| 264 |
+
"""
|
| 265 |
+
The forward pass of the TunesFormer model.
|
| 266 |
+
:param patches: the patches to be both encoded and decoded
|
| 267 |
+
:return: the decoded patches
|
| 268 |
+
"""
|
| 269 |
+
patches = patches.reshape(len(patches), -1, PATCH_SIZE)
|
| 270 |
+
encoded_patches = self.patch_level_decoder(patches)["last_hidden_state"]
|
| 271 |
+
|
| 272 |
+
return self.char_level_decoder(
|
| 273 |
+
encoded_patches.squeeze(0)[:-1, :],
|
| 274 |
+
patches.squeeze(0)[1:, :],
|
| 275 |
+
patch_sampling_batch_size,
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
def generate(
|
| 279 |
+
self,
|
| 280 |
+
patches: torch.Tensor,
|
| 281 |
+
tokens: torch.Tensor,
|
| 282 |
+
top_p: float = 1,
|
| 283 |
+
top_k: int = 0,
|
| 284 |
+
temperature: float = 1,
|
| 285 |
+
seed: int = None,
|
| 286 |
+
):
|
| 287 |
+
"""
|
| 288 |
+
The generate function for generating patches based on patches.
|
| 289 |
+
:param patches: the patches to be encoded
|
| 290 |
+
:return: the generated patches
|
| 291 |
+
"""
|
| 292 |
+
patches = patches.reshape(len(patches), -1, PATCH_SIZE)
|
| 293 |
+
encoded_patches = self.patch_level_decoder(patches)["last_hidden_state"]
|
| 294 |
+
|
| 295 |
+
if tokens == None:
|
| 296 |
+
tokens = torch.tensor([self.bos_token_id], device=self.device)
|
| 297 |
+
|
| 298 |
+
generated_patch = []
|
| 299 |
+
random.seed(seed)
|
| 300 |
+
|
| 301 |
+
while True:
|
| 302 |
+
if seed != None:
|
| 303 |
+
n_seed = random.randint(0, 1000000)
|
| 304 |
+
random.seed(n_seed)
|
| 305 |
+
|
| 306 |
+
else:
|
| 307 |
+
n_seed = None
|
| 308 |
+
|
| 309 |
+
prob = (
|
| 310 |
+
self.char_level_decoder.generate(encoded_patches[0][-1], tokens)
|
| 311 |
+
.cpu()
|
| 312 |
+
.detach()
|
| 313 |
+
.numpy()
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
prob = top_p_sampling(prob, top_p=top_p, return_probs=True)
|
| 317 |
+
prob = top_k_sampling(prob, top_k=top_k, return_probs=True)
|
| 318 |
+
|
| 319 |
+
token = temperature_sampling(prob, temperature=temperature, seed=n_seed)
|
| 320 |
+
|
| 321 |
+
generated_patch.append(token)
|
| 322 |
+
if token == self.eos_token_id or len(tokens) >= PATCH_SIZE - 1:
|
| 323 |
+
break
|
| 324 |
+
|
| 325 |
+
else:
|
| 326 |
+
tokens = torch.cat(
|
| 327 |
+
(tokens, torch.tensor([token], device=self.device)), dim=0
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
return generated_patch, n_seed
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
class PatchilizedData(Dataset):
|
| 334 |
+
def __init__(self, items, patchilizer):
|
| 335 |
+
self.texts = []
|
| 336 |
+
|
| 337 |
+
for item in tqdm(items):
|
| 338 |
+
text = item["control code"] + "\n".join(
|
| 339 |
+
item["abc notation"].split("\n")[1:]
|
| 340 |
+
)
|
| 341 |
+
input_patch = patchilizer.encode(text, add_special_patches=True)
|
| 342 |
+
input_patch = torch.tensor(input_patch)
|
| 343 |
+
if torch.sum(input_patch) != 0:
|
| 344 |
+
self.texts.append(input_patch)
|
| 345 |
+
|
| 346 |
+
def __len__(self):
|
| 347 |
+
return len(self.texts)
|
| 348 |
+
|
| 349 |
+
def __getitem__(self, idx):
|
| 350 |
+
return self.texts[idx]
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
music21
|
| 2 |
+
pymupdf
|
| 3 |
+
autopep8
|
| 4 |
+
unidecode
|
| 5 |
+
pillow==9.4.0
|
| 6 |
+
samplings==0.1.7
|
| 7 |
+
modelscope==1.15
|
| 8 |
+
transformers==4.18.0
|
utils.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import time
|
| 4 |
+
import torch
|
| 5 |
+
import requests
|
| 6 |
+
import subprocess
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from modelscope.hub.api import HubApi
|
| 9 |
+
from modelscope import snapshot_download
|
| 10 |
+
|
| 11 |
+
HubApi().login(os.getenv("ms_app_key"))
|
| 12 |
+
TEMP_DIR = "./flagged"
|
| 13 |
+
WEIGHTS_DIR = snapshot_download("monetjoe/EMusicGen", cache_dir="./__pycache__")
|
| 14 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
PATCH_LENGTH = 128 # Patch Length
|
| 16 |
+
PATCH_SIZE = 32 # Patch Size
|
| 17 |
+
PATCH_NUM_LAYERS = 9 # Number of layers in the encoder
|
| 18 |
+
CHAR_NUM_LAYERS = 3 # Number of layers in the decoder
|
| 19 |
+
PATCH_SAMPLING_BATCH_SIZE = 0 # Batch size for training patch, 0 for full context
|
| 20 |
+
LOAD_FROM_CHECKPOINT = True # Whether to load weights from a checkpoint
|
| 21 |
+
SHARE_WEIGHTS = False # Whether to share weights between the encoder and decoder
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def download(filename: str, url: str):
|
| 25 |
+
try:
|
| 26 |
+
response = requests.get(url, stream=True)
|
| 27 |
+
total_size = int(response.headers.get("content-length", 0))
|
| 28 |
+
chunk_size = 1024
|
| 29 |
+
|
| 30 |
+
with open(filename, "wb") as file, tqdm(
|
| 31 |
+
desc=f"Downloading {filename} from {url}...",
|
| 32 |
+
total=total_size,
|
| 33 |
+
unit="B",
|
| 34 |
+
unit_scale=True,
|
| 35 |
+
unit_divisor=1024,
|
| 36 |
+
) as bar:
|
| 37 |
+
for data in response.iter_content(chunk_size=chunk_size):
|
| 38 |
+
size = file.write(data)
|
| 39 |
+
bar.update(size)
|
| 40 |
+
|
| 41 |
+
except Exception as e:
|
| 42 |
+
print(f"Error: {e}")
|
| 43 |
+
time.sleep(10)
|
| 44 |
+
download(filename, url)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
if sys.platform.startswith("linux"):
|
| 48 |
+
apkname = "MuseScore.AppImage"
|
| 49 |
+
extra_dir = "squashfs-root"
|
| 50 |
+
download(
|
| 51 |
+
filename=apkname,
|
| 52 |
+
url="https://www.modelscope.cn/studio/MuGeminorum/piano_transcription/resolve/master/MuseScore.AppImage",
|
| 53 |
+
)
|
| 54 |
+
if not os.path.exists(extra_dir):
|
| 55 |
+
subprocess.run(["chmod", "+x", f"./{apkname}"])
|
| 56 |
+
subprocess.run([f"./{apkname}", "--appimage-extract"])
|
| 57 |
+
|
| 58 |
+
MSCORE = f"./{extra_dir}/AppRun"
|
| 59 |
+
os.environ["QT_QPA_PLATFORM"] = "offscreen"
|
| 60 |
+
|
| 61 |
+
else:
|
| 62 |
+
MSCORE = os.getenv("mscore")
|
xml2abc.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|