Spaces:
Sleeping
Sleeping
remove token
Browse files- app.py +117 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import subprocess
|
4 |
+
import tempfile
|
5 |
+
import requests
|
6 |
+
from moviepy.editor import VideoFileClip
|
7 |
+
|
8 |
+
# Ensure the official OpenAI Whisper package is installed (supports load_model)
|
9 |
+
try:
|
10 |
+
import whisper
|
11 |
+
if not hasattr(whisper, 'load_model'):
|
12 |
+
raise ImportError
|
13 |
+
except ImportError:
|
14 |
+
subprocess.run([sys.executable, "-m", "pip", "install", "--upgrade", "openai-whisper"], check=True)
|
15 |
+
import whisper
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import librosa
|
19 |
+
import pandas as pd
|
20 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
|
21 |
+
from huggingface_hub import login
|
22 |
+
import gradio as gr
|
23 |
+
|
24 |
+
# Authenticate with Hugging Face (token via HF_TOKEN env var)
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
# Device setup (GPU if available)
|
29 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
30 |
+
|
31 |
+
def load_models():
|
32 |
+
# Load Whisper directly on the target device
|
33 |
+
whisper_model = whisper.load_model('base', device=device)
|
34 |
+
processor = Wav2Vec2Processor.from_pretrained(
|
35 |
+
'jonatasgrosman/wav2vec2-large-xlsr-53-english'
|
36 |
+
)
|
37 |
+
accent_model = Wav2Vec2ForSequenceClassification.from_pretrained(
|
38 |
+
'jonatasgrosman/wav2vec2-large-xlsr-53-english'
|
39 |
+
).to(device)
|
40 |
+
return whisper_model, processor, accent_model
|
41 |
+
|
42 |
+
whisper_model, processor, accent_model = load_models()
|
43 |
+
|
44 |
+
# Main analysis function
|
45 |
+
def analyze(video_url: str):
|
46 |
+
# Download video to temp file
|
47 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_vid:
|
48 |
+
response = requests.get(video_url, stream=True)
|
49 |
+
response.raise_for_status()
|
50 |
+
for chunk in response.iter_content(chunk_size=1024 * 1024):
|
51 |
+
if chunk:
|
52 |
+
tmp_vid.write(chunk)
|
53 |
+
video_path = tmp_vid.name
|
54 |
+
|
55 |
+
# Extract audio
|
56 |
+
audio_path = video_path.replace('.mp4', '.wav')
|
57 |
+
clip = VideoFileClip(video_path)
|
58 |
+
clip.audio.write_audiofile(audio_path, verbose=False, logger=None)
|
59 |
+
clip.close()
|
60 |
+
|
61 |
+
# Load audio waveform
|
62 |
+
speech, sr = librosa.load(audio_path, sr=16000)
|
63 |
+
|
64 |
+
# Transcribe with Whisper (model on correct device)
|
65 |
+
result = whisper_model.transcribe(speech)
|
66 |
+
transcript = result.get('text', '')
|
67 |
+
lang = result.get('language', 'unknown')
|
68 |
+
if lang != 'en':
|
69 |
+
transcript = f"[Non-English detected: {lang}]\n" + transcript
|
70 |
+
|
71 |
+
# Accent classification
|
72 |
+
inputs = processor(speech, sampling_rate=sr, return_tensors='pt', padding=True)
|
73 |
+
input_values = inputs.input_values.to(device)
|
74 |
+
attention_mask = inputs.attention_mask.to(device)
|
75 |
+
with torch.no_grad():
|
76 |
+
logits = accent_model(input_values=input_values, attention_mask=attention_mask).logits
|
77 |
+
probs = torch.softmax(logits, dim=-1).squeeze().cpu().tolist()
|
78 |
+
|
79 |
+
# Map default LABEL_x to human-readable accents
|
80 |
+
accent_labels = [
|
81 |
+
'American', 'Australian', 'British', 'Canadian', 'Indian',
|
82 |
+
'Irish', 'New Zealander', 'South African', 'Welsh'
|
83 |
+
] # ensure this matches model output order
|
84 |
+
accent_probs = [(accent_labels[i], probs[i] * 100) for i in range(len(probs))]
|
85 |
+
accent_probs.sort(key=lambda x: x[1], reverse=True)
|
86 |
+
top_accent, top_conf = accent_probs[0]
|
87 |
+
|
88 |
+
# Prepare DataFrame
|
89 |
+
df = pd.DataFrame(accent_probs, columns=['Accent', 'Confidence (%)'])
|
90 |
+
df = pd.DataFrame(accent_probs, columns=['Accent', 'Confidence (%)'])
|
91 |
+
|
92 |
+
# Cleanup temp files
|
93 |
+
try:
|
94 |
+
os.remove(video_path)
|
95 |
+
os.remove(audio_path)
|
96 |
+
except:
|
97 |
+
pass
|
98 |
+
|
99 |
+
return top_accent, f"{top_conf:.2f}%", df
|
100 |
+
|
101 |
+
# Gradio interface
|
102 |
+
interface = gr.Interface(
|
103 |
+
fn=analyze,
|
104 |
+
inputs=gr.Textbox(label='Video URL', placeholder='Enter public MP4 URL'),
|
105 |
+
outputs=[
|
106 |
+
# gr.Textbox(label='Transcript'),
|
107 |
+
gr.Textbox(label='Predicted Accent'),
|
108 |
+
gr.Textbox(label='Accent Confidence'),
|
109 |
+
gr.Dataframe(label='All Accent Probabilities')
|
110 |
+
],
|
111 |
+
title='English Accent Detector',
|
112 |
+
description='Paste a Loom or direct MP4 URL to extract, transcribe, and classify English accents (uses GPU if available).',
|
113 |
+
allow_flagging='never'
|
114 |
+
)
|
115 |
+
|
116 |
+
if __name__ == '__main__':
|
117 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai-whisper
|
2 |
+
gradio
|
3 |
+
requests
|
4 |
+
moviepy
|
5 |
+
torch
|
6 |
+
librosa
|
7 |
+
pandas
|
8 |
+
transformers
|
9 |
+
huggingface-hub
|