vikhyatk commited on
Commit
0e53af6
·
verified ·
1 Parent(s): 0e91351

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +94 -0
app.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import torch
3
+ import re
4
+ import gradio as gr
5
+ from threading import Thread
6
+ from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
7
+ from PIL import ImageDraw
8
+ from torchvision.transforms.v2 import Resize
9
+
10
+ import subprocess
11
+ subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
12
+
13
+ model_id = "vikhyatk/moondream2"
14
+ revision = "2024-08-26"
15
+ tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
16
+ moondream = AutoModelForCausalLM.from_pretrained(
17
+ model_id, trust_remote_code=True, revision=revision,
18
+ torch_dtype=torch.bfloat16, device_map={"": "cuda"},
19
+ attn_implementation="flash_attention_2"
20
+ )
21
+ moondream.eval()
22
+
23
+
24
+ @spaces.GPU(duration=10)
25
+ def answer_question(img, prompt):
26
+ image_embeds = moondream.encode_image(img)
27
+ streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
28
+ thread = Thread(
29
+ target=moondream.answer_question,
30
+ kwargs={
31
+ "image_embeds": image_embeds,
32
+ "question": prompt,
33
+ "tokenizer": tokenizer,
34
+ "streamer": streamer,
35
+ },
36
+ )
37
+ thread.start()
38
+
39
+ buffer = ""
40
+ for new_text in streamer:
41
+ buffer += new_text
42
+ yield buffer.strip()
43
+
44
+ def extract_floats(text):
45
+ # Regular expression to match an array of four floating point numbers
46
+ pattern = r"\[\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*\]"
47
+ match = re.search(pattern, text)
48
+ if match:
49
+ # Extract the numbers and convert them to floats
50
+ return [float(num) for num in match.groups()]
51
+ return None # Return None if no match is found
52
+
53
+
54
+ def extract_bbox(text):
55
+ bbox = None
56
+ if extract_floats(text) is not None:
57
+ x1, y1, x2, y2 = extract_floats(text)
58
+ bbox = (x1, y1, x2, y2)
59
+ return bbox
60
+
61
+ def process_answer(img, answer):
62
+ if extract_bbox(answer) is not None:
63
+ x1, y1, x2, y2 = extract_bbox(answer)
64
+ draw_image = Resize(768)(img)
65
+ width, height = draw_image.size
66
+ x1, x2 = int(x1 * width), int(x2 * width)
67
+ y1, y2 = int(y1 * height), int(y2 * height)
68
+ bbox = (x1, y1, x2, y2)
69
+ ImageDraw.Draw(draw_image).rectangle(bbox, outline="red", width=3)
70
+ return gr.update(visible=True, value=draw_image)
71
+
72
+ return gr.update(visible=False, value=None)
73
+
74
+ with gr.Blocks() as demo:
75
+ gr.Markdown(
76
+ """
77
+ # 🌔 moondream vl (new)
78
+ A tiny vision language model. [GitHub](https://github.com/vikhyat/moondream)
79
+ """
80
+ )
81
+ with gr.Row():
82
+ prompt = gr.Textbox(label="Input", value="Describe this image.", scale=4)
83
+ submit = gr.Button("Submit")
84
+ with gr.Row():
85
+ img = gr.Image(type="pil", label="Upload an Image")
86
+ with gr.Column():
87
+ output = gr.Markdown(label="Response")
88
+ ann = gr.Image(visible=False, label="Annotated Image")
89
+
90
+ submit.click(answer_question, [img, prompt], output)
91
+ prompt.submit(answer_question, [img, prompt], output)
92
+ output.change(process_answer, [img, output], ann, show_progress=False)
93
+
94
+ demo.queue().launch()