Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,25 +4,41 @@ import re
|
|
4 |
import os
|
5 |
import gradio as gr
|
6 |
from threading import Thread
|
7 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
8 |
from PIL import ImageDraw
|
9 |
from torchvision.transforms.v2 import Resize
|
10 |
|
11 |
import subprocess
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
auth_token = os.environ.get("TOKEN_FROM_SECRET") or True
|
15 |
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
|
16 |
moondream = AutoModelForCausalLM.from_pretrained(
|
17 |
-
"vikhyatk/moondream-next",
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
20 |
)
|
21 |
moondream.eval()
|
22 |
|
23 |
|
24 |
@spaces.GPU(duration=10)
|
25 |
def answer_question(img, prompt):
|
|
|
|
|
|
|
26 |
image_embeds = moondream.encode_image(img)
|
27 |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
28 |
thread = Thread(
|
@@ -41,6 +57,30 @@ def answer_question(img, prompt):
|
|
41 |
buffer += new_text
|
42 |
yield buffer.strip()
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def extract_floats(text):
|
45 |
# Regular expression to match an array of four floating point numbers
|
46 |
pattern = r"\[\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*\]"
|
@@ -58,6 +98,7 @@ def extract_bbox(text):
|
|
58 |
bbox = (x1, y1, x2, y2)
|
59 |
return bbox
|
60 |
|
|
|
61 |
def process_answer(img, answer):
|
62 |
if extract_bbox(answer) is not None:
|
63 |
x1, y1, x2, y2 = extract_bbox(answer)
|
@@ -71,7 +112,41 @@ def process_answer(img, answer):
|
|
71 |
|
72 |
return gr.update(visible=False, value=None)
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
gr.Markdown(
|
76 |
"""
|
77 |
# 🌔 moondream vl (new)
|
@@ -79,16 +154,44 @@ with gr.Blocks() as demo:
|
|
79 |
"""
|
80 |
)
|
81 |
with gr.Row():
|
82 |
-
prompt = gr.Textbox(label="Input", value="Describe this image.", scale=4)
|
83 |
-
submit = gr.Button("Submit")
|
84 |
-
with gr.Row():
|
85 |
-
img = gr.Image(type="pil", label="Upload an Image")
|
86 |
with gr.Column():
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
ann = gr.Image(visible=False, label="Annotated Image")
|
89 |
|
90 |
-
submit.click(answer_question, [img, prompt], output)
|
91 |
-
prompt.submit(answer_question, [img, prompt], output)
|
92 |
-
output.change(process_answer, [img, output], ann, show_progress=False)
|
93 |
|
94 |
-
demo.queue().launch()
|
|
|
4 |
import os
|
5 |
import gradio as gr
|
6 |
from threading import Thread
|
7 |
+
from transformers import (
|
8 |
+
TextIteratorStreamer,
|
9 |
+
AutoTokenizer,
|
10 |
+
AutoModelForCausalLM,
|
11 |
+
StaticCache,
|
12 |
+
)
|
13 |
from PIL import ImageDraw
|
14 |
from torchvision.transforms.v2 import Resize
|
15 |
|
16 |
import subprocess
|
17 |
+
|
18 |
+
subprocess.run(
|
19 |
+
"pip install flash-attn --no-build-isolation",
|
20 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
21 |
+
shell=True,
|
22 |
+
)
|
23 |
|
24 |
auth_token = os.environ.get("TOKEN_FROM_SECRET") or True
|
25 |
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
|
26 |
moondream = AutoModelForCausalLM.from_pretrained(
|
27 |
+
"vikhyatk/moondream-next",
|
28 |
+
trust_remote_code=True,
|
29 |
+
torch_dtype=torch.float16,
|
30 |
+
device_map={"": "cuda"},
|
31 |
+
attn_implementation="flash_attention_2",
|
32 |
+
token=auth_token,
|
33 |
)
|
34 |
moondream.eval()
|
35 |
|
36 |
|
37 |
@spaces.GPU(duration=10)
|
38 |
def answer_question(img, prompt):
|
39 |
+
if img is None:
|
40 |
+
return
|
41 |
+
|
42 |
image_embeds = moondream.encode_image(img)
|
43 |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
44 |
thread = Thread(
|
|
|
57 |
buffer += new_text
|
58 |
yield buffer.strip()
|
59 |
|
60 |
+
|
61 |
+
@spaces.GPU(duration=10)
|
62 |
+
def caption(img, mode):
|
63 |
+
if img is None:
|
64 |
+
return
|
65 |
+
|
66 |
+
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
67 |
+
thread = Thread(
|
68 |
+
target=moondream.caption,
|
69 |
+
kwargs={
|
70 |
+
"images": [img],
|
71 |
+
"length": "short" if mode == "Short" else None,
|
72 |
+
"tokenizer": tokenizer,
|
73 |
+
"streamer": streamer,
|
74 |
+
},
|
75 |
+
)
|
76 |
+
thread.start()
|
77 |
+
|
78 |
+
buffer = ""
|
79 |
+
for new_text in streamer:
|
80 |
+
buffer += new_text
|
81 |
+
yield buffer.strip()
|
82 |
+
|
83 |
+
|
84 |
def extract_floats(text):
|
85 |
# Regular expression to match an array of four floating point numbers
|
86 |
pattern = r"\[\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*\]"
|
|
|
98 |
bbox = (x1, y1, x2, y2)
|
99 |
return bbox
|
100 |
|
101 |
+
|
102 |
def process_answer(img, answer):
|
103 |
if extract_bbox(answer) is not None:
|
104 |
x1, y1, x2, y2 = extract_bbox(answer)
|
|
|
112 |
|
113 |
return gr.update(visible=False, value=None)
|
114 |
|
115 |
+
|
116 |
+
with gr.Blocks(title="moondream vl (new)") as demo:
|
117 |
+
gr.HTML(
|
118 |
+
"""
|
119 |
+
<script>
|
120 |
+
window.addEventListener('load', function () {
|
121 |
+
gradioURL = window.location.href;
|
122 |
+
if (!gradioURL.endsWith('?__theme=dark')) {
|
123 |
+
window.location.replace(gradioURL + '?__theme=dark');
|
124 |
+
}
|
125 |
+
});
|
126 |
+
</script>
|
127 |
+
<style type="text/css">
|
128 |
+
.output-text span p { font-size: 1.4rem !important; }
|
129 |
+
/* Add a beautiful dark background animation for space theme */
|
130 |
+
body gradio-app {
|
131 |
+
background: linear-gradient(to right, #0c0d21, #1f1e33) !important;
|
132 |
+
animation: gradientBG 15s ease infinite;
|
133 |
+
background-size: 400% 400%;
|
134 |
+
}
|
135 |
+
|
136 |
+
@keyframes gradientBG {
|
137 |
+
0% {
|
138 |
+
background-position: 0% 50%;
|
139 |
+
}
|
140 |
+
50% {
|
141 |
+
background-position: 100% 50%;
|
142 |
+
}
|
143 |
+
100% {
|
144 |
+
background-position: 0% 50%;
|
145 |
+
}
|
146 |
+
}
|
147 |
+
</style>
|
148 |
+
"""
|
149 |
+
)
|
150 |
gr.Markdown(
|
151 |
"""
|
152 |
# 🌔 moondream vl (new)
|
|
|
154 |
"""
|
155 |
)
|
156 |
with gr.Row():
|
|
|
|
|
|
|
|
|
157 |
with gr.Column():
|
158 |
+
mode_radio = gr.Radio(
|
159 |
+
["Caption", "Query", "Detect"],
|
160 |
+
show_label=False,
|
161 |
+
value=lambda: "Caption",
|
162 |
+
)
|
163 |
+
|
164 |
+
@gr.render(inputs=[mode_radio])
|
165 |
+
def show_inputs(mode):
|
166 |
+
if mode == "Query":
|
167 |
+
with gr.Group():
|
168 |
+
with gr.Row():
|
169 |
+
prompt = gr.Textbox(
|
170 |
+
label="Input",
|
171 |
+
value="How many people are in this image?",
|
172 |
+
scale=4,
|
173 |
+
)
|
174 |
+
submit = gr.Button("Submit")
|
175 |
+
img = gr.Image(type="pil", label="Upload an Image")
|
176 |
+
submit.click(answer_question, [img, prompt], output)
|
177 |
+
prompt.submit(answer_question, [img, prompt], output)
|
178 |
+
img.change(answer_question, [img, prompt], output)
|
179 |
+
elif mode == "Caption":
|
180 |
+
with gr.Group():
|
181 |
+
caption_mode = gr.Radio(
|
182 |
+
["Short", "Normal"],
|
183 |
+
show_label=False,
|
184 |
+
value=lambda: "Normal",
|
185 |
+
)
|
186 |
+
img = gr.Image(type="pil", label="Upload an Image")
|
187 |
+
caption_mode.change(caption, [img, caption_mode], output)
|
188 |
+
img.change(caption, [img, caption_mode], output)
|
189 |
+
else:
|
190 |
+
gr.Markdown("Coming soon!")
|
191 |
+
|
192 |
+
with gr.Column():
|
193 |
+
output = gr.Markdown(label="Response", elem_classes=["output-text"])
|
194 |
ann = gr.Image(visible=False, label="Annotated Image")
|
195 |
|
|
|
|
|
|
|
196 |
|
197 |
+
demo.queue().launch()
|