Spaces:
Build error
Build error
File size: 10,387 Bytes
8eb4303 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import torch
import torch.nn as nn
import numpy as np
import random
from modules.audio2motion.cfm.icl_transformer import InContextTransformerAudio2Motion
from modules.audio2motion.cfm.cfm_wrapper import ConditionalFlowMatcherWrapper
from utils.commons.pitch_utils import f0_to_coarse
class InContextAudio2MotionModel(nn.Module):
def __init__(self, mode='icl_transformer', hparams=None):
super().__init__()
self.hparams = hparams
feat_dim = 256
self.hubert_encoder = nn.Sequential(*[
nn.Conv1d(1024, feat_dim , 3, 1, 1, bias=False),
nn.BatchNorm1d(feat_dim),
nn.GELU(),
nn.Conv1d(feat_dim, feat_dim, 3, 1, 1, bias=False)
])
dim_audio_in = feat_dim
if hparams.get("use_aux_features", False):
aux_feat_dim = 32
self.pitch_embed = nn.Embedding(300, aux_feat_dim, None)
self.pitch_encoder = nn.Sequential(*[
nn.Conv1d(aux_feat_dim, aux_feat_dim , 3, 1, 1, bias=False),
nn.BatchNorm1d(aux_feat_dim),
nn.GELU(),
nn.Conv1d(aux_feat_dim, aux_feat_dim, 3, 1, 1, bias=False)
])
self.blink_embed = nn.Embedding(2, aux_feat_dim)
self.null_blink_embed = nn.Parameter(torch.randn(aux_feat_dim))
self.mouth_amp_embed = nn.Parameter(torch.randn(aux_feat_dim))
self.null_mouth_amp_embed = nn.Parameter(torch.randn(aux_feat_dim))
dim_audio_in += 3 * aux_feat_dim
icl_transformer = InContextTransformerAudio2Motion(
dim_in=64 + 3 + 3, # exp and euler and trans
dim_audio_in=dim_audio_in,
dim=feat_dim,
depth=16,
dim_head=64,
heads=8,
frac_lengths_mask=(0.6, 1.),
)
self.mode = mode
if mode == 'icl_transformer':
self.backbone = icl_transformer
elif mode == 'icl_flow_matching':
flow_matching_model = ConditionalFlowMatcherWrapper(icl_transformer)
self.backbone = flow_matching_model
else:
raise NotImplementedError()
# used during inference
self.hubert_context = None
self.f0_context = None
self.motion_context = None
def num_params(self, model=None, print_out=True, model_name="model"):
if model is None:
model = self
parameters = filter(lambda p: p.requires_grad, model.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
if print_out:
print(f'| {model_name} Trainable Parameters: %.3fM' % parameters)
return parameters
def device(self):
return self.model.parameters().__next__().device
def forward(self, batch, ret, train=True, temperature=1., cond_scale=1.0, denoising_steps=10):
infer = not train
hparams = self.hparams
mask = batch['y_mask'].bool()
mel = batch['audio']
# f0 = batch['f0'] # [b,t]
if 'blink' not in batch:
batch['blink'] = torch.zeros([mel.shape[0], mel.shape[1]], dtype=torch.long, device=mel.device)
blink = batch['blink']
if 'mouth_amp' not in batch:
batch['mouth_amp'] = torch.ones([mel.shape[0], 1], device=mel.device)
mouth_amp = batch['mouth_amp']
cond_mask = None
cond = None
if infer and self.hubert_context is not None:
mel = torch.cat([self.hubert_context.to(mel.device), mel], dim=1)
# f0 = torch.cat([self.f0_context.to(mel.device), f0], dim=1)
blink = torch.cat([torch.zeros([mel.shape[0], self.hubert_context.shape[1],1],dtype=mel.dtype, device=mel.device), blink], dim=1)
mask = torch.ones([mel.shape[0], mel.shape[1]//2,], dtype=mel.dtype, device=mel.device).bool()
cond = torch.randn([mel.shape[0], mel.shape[1]//2, 64 + 6], dtype=mel.dtype, device=mel.device)
if hparams.get("zero_input_for_transformer", True) and self.mode == 'icl_transformer':
cond = cond * 0
cond[:, :self.motion_context.shape[1]] = self.motion_context.to(mel.device)
cond_mask = torch.ones([mel.shape[0], mel.shape[1]//2,], dtype=mel.dtype, device=mel.device) # 这个mask,1代表需要预测,0代表是reference
cond_mask[:, :self.motion_context.shape[1]] = 0. # 将reference部分设置为0
cond_mask = cond_mask.bool()
cond_feat = self.hubert_encoder(mel.transpose(1,2)).transpose(1,2)
cond_feats = [cond_feat]
if hparams.get("use_aux_features", False):
# use blink, f0, mouth_amp as auxiliary features in addtion to the hubert feature
if (self.training and random.random() < 0.5) or (batch.get("null_cond", False)):
use_null_aux_feats = True
else:
use_null_aux_feats = False
# f0_coarse = f0_to_coarse(f0)
# pitch_emb = self.pitch_embed(f0_coarse)
# pitch_feat = self.pitch_encoder(pitch_emb.transpose(1,2)).transpose(1,2)
if use_null_aux_feats:
mouth_amp_feat = self.null_mouth_amp_embed.unsqueeze(0).repeat([mel.shape[0], cond_feat.shape[1],1])
blink_feat = self.null_blink_embed.unsqueeze(0).repeat([mel.shape[0], cond_feat.shape[1],1])
else:
blink_feat = self.blink_embed(blink.squeeze(2).long())
mouth_amp_feat = mouth_amp.unsqueeze(1) * self.mouth_amp_embed.unsqueeze(0)
mouth_amp_feat = mouth_amp_feat.repeat([1,cond_feat.shape[1],1])
cond_feats.append(pitch_feat)
cond_feats.append(blink_feat)
cond_feats.append(mouth_amp_feat)
cond_feat = torch.cat(cond_feats, dim=-1)
if not infer:
# Train
exp = batch['y']
if self.mode == 'icl_transformer':
x = torch.randn_like(exp)
times_tensor = torch.zeros((x.shape[0],), dtype=x.dtype, device=x.device)
if hparams.get("zero_input_for_transformer", True):
mse_loss = self.backbone(x=x*0, times=times_tensor, cond_audio=cond_feat, self_attn_mask=mask, cond_drop_prob=0., target=exp, cond=exp, cond_mask=None, ret=ret)
else:
mse_loss = self.backbone(x=x, times=times_tensor, cond_audio=cond_feat, self_attn_mask=mask, cond_drop_prob=0., target=exp, cond=exp, cond_mask=None, ret=ret)
elif self.mode == 'icl_flow_matching':
mse_loss = self.backbone(x1=exp, cond_audio=cond_feat, mask=mask, cond=exp, cond_mask=None, ret=ret)
ret['pred'] = ret['pred']
ret['loss_mask'] = ret['loss_mask']
ret['mse'] = mse_loss
return mse_loss
else:
# Infer
# todo: 在infer的时候能够使用上context,即提供cond_mask
if cond is None:
target_x_len = mask.shape[1]
cond = torch.randn([cond_feat.shape[0], target_x_len, 64 + 6], dtype=cond_feat.dtype, device=cond_feat.device)
if hparams.get("zero_input_for_transformer", True):
cond = cond * 0
if self.mode == 'icl_transformer':
times_tensor = torch.zeros((x.shape[0],), dtype=x.dtype, device=x.device)
x_recon = self.backbone(x=cond, times=times_tensor, cond_audio=cond_feat, self_attn_mask=mask, cond_drop_prob=0., cond=cond, cond_mask=cond_mask, ret=ret)
elif self.mode == 'icl_flow_matching':
# default of voicebox is steps=3, elapsed time 0.56s; as for our steps=1000, elapsed time 0.66s
x_recon = self.backbone.sample(cond_audio=cond_feat, self_attn_mask=mask, cond=cond, cond_mask=cond_mask, temperature=temperature, steps=denoising_steps, cond_scale=cond_scale)
# x_recon = self.backbone.sample(cond_audio=cond_feat, self_attn_mask=mask, cond=cond, cond_mask=cond_mask, temperature=temperature, steps=5, )
x_recon = x_recon * mask.unsqueeze(-1)
ret['pred'] = x_recon
ret['mask'] = mask
if self.motion_context is not None:
len_reference = self.motion_context.shape[1]
ret['pred'] = x_recon[:,len_reference:]
ret['mask'] = mask[:,len_reference:]
return x_recon
def add_sample_to_context(self, motion, hubert=None, f0=None):
# B, T, C, audio should 2X length of motion
assert motion is not None
if self.motion_context is None:
self.motion_context = motion
else:
self.motion_context = torch.cat([self.motion_context, motion], dim=1)
if self.hubert_context is None:
if hubert is None:
self.hubert_context = torch.zeros([motion.shape[0], motion.shape[1]*2, 1024], dtype=motion.dtype, device=motion.device)
self.f0_context = torch.zeros([motion.shape[0], motion.shape[1]*2], dtype=motion.dtype, device=motion.device)
else:
self.hubert_context = hubert
self.f0_context = f0.reshape([hubert.shape[0],hubert.shape[1]])
else:
if hubert is None:
self.hubert_context = torch.cat([self.hubert_context, torch.zeros([motion.shape[0], motion.shape[1]*2, 1024], dtype=motion.dtype, device=motion.device)], dim=1)
self.f0_context = torch.cat([self.f0_context, torch.zeros([motion.shape[0], motion.shape[1]*2], dtype=motion.dtype, device=motion.device)], dim=1)
else:
self.hubert_context = torch.cat([self.hubert_context, hubert], dim=1)
self.f0_context = torch.cat([self.f0_context, f0], dim=1)
return 0
def empty_context(self):
self.hubert_context = None
self.f0_context = None
self.motion_context = None
#
if __name__ == '__main__':
model = InContextAudio2MotionModel()
model.num_params() |