Spaces:
Build error
Build error
File size: 10,294 Bytes
8eb4303 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import torch
from torch import nn, Tensor, einsum, IntTensor, FloatTensor, BoolTensor
from torch.nn import Module
import torch.nn.functional as F
from beartype import beartype
from beartype.typing import Tuple, Optional, List, Union
from einops.layers.torch import Rearrange
from einops import rearrange, repeat, reduce, pack, unpack
# from gateloop_transformer import SimpleGateLoopLayer as GateLoop
from modules.audio2motion.cfm.utils import *
from modules.audio2motion.cfm.attend import Attend
import math
from functools import partial
from torch.cuda.amp import autocast
# sinusoidal positions
class LearnedSinusoidalPosEmb(Module):
""" used by @crowsonkb """
def __init__(self, dim):
super().__init__()
assert divisible_by(dim, 2)
half_dim = dim // 2
self.weights = nn.Parameter(torch.randn(half_dim))
def forward(self, x):
x = rearrange(x, 'b -> b 1')
freqs = x * rearrange(self.weights, 'd -> 1 d') * 2 * math.pi
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim = -1)
return fouriered
# rotary positional embeddings
# https://arxiv.org/abs/2104.09864
class RotaryEmbedding(Module):
def __init__(self, dim, theta = 50000):
super().__init__()
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
@property
def device(self):
return self.inv_freq.device
@autocast(enabled = False)
@beartype
def forward(self, t: Union[int, Tensor]):
if not torch.is_tensor(t):
t = torch.arange(t, device = self.device)
t = t.type_as(self.inv_freq)
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
freqs = torch.cat((freqs, freqs), dim = -1)
return freqs
def rotate_half(x):
x1, x2 = x.chunk(2, dim = -1)
return torch.cat((-x2, x1), dim = -1)
@autocast(enabled = False)
def apply_rotary_pos_emb(pos, t):
return t * pos.cos() + rotate_half(t) * pos.sin()
# convolutional positional generating module
class ConvPositionEmbed(Module):
def __init__(
self,
dim,
*,
kernel_size,
groups = None
):
super().__init__()
assert is_odd(kernel_size)
groups = default(groups, dim) # full depthwise conv by default
self.dw_conv1d = nn.Sequential(
nn.Conv1d(dim, dim, kernel_size, groups = groups, padding = kernel_size // 2),
nn.GELU()
)
def forward(self, x):
x = rearrange(x, 'b n c -> b c n')
x = self.dw_conv1d(x)
return rearrange(x, 'b c n -> b n c')
# norms
class RMSNorm(Module):
def __init__(
self,
dim
):
super().__init__()
self.scale = dim ** 0.5
self.gamma = nn.Parameter(torch.ones(dim))
def forward(self, x):
return F.normalize(x, dim = -1) * self.scale * self.gamma
class AdaptiveRMSNorm(Module):
def __init__(
self,
dim,
cond_dim = None
):
super().__init__()
cond_dim = default(cond_dim, dim)
self.scale = dim ** 0.5
self.to_gamma = nn.Linear(cond_dim, dim)
self.to_beta = nn.Linear(cond_dim, dim)
# init to identity
nn.init.zeros_(self.to_gamma.weight)
nn.init.ones_(self.to_gamma.bias)
nn.init.zeros_(self.to_beta.weight)
nn.init.zeros_(self.to_beta.bias)
def forward(self, x, *, cond):
normed = F.normalize(x, dim = -1) * self.scale
gamma, beta = self.to_gamma(cond), self.to_beta(cond)
gamma, beta = map(lambda t: rearrange(t, 'b d -> b 1 d'), (gamma, beta))
return normed * gamma + beta
# attention
class MultiheadRMSNorm(Module):
def __init__(self, dim, heads):
super().__init__()
self.scale = dim ** 0.5
self.gamma = nn.Parameter(torch.ones(heads, 1, dim))
def forward(self, x):
return F.normalize(x, dim = -1) * self.gamma * self.scale
class Attention(Module):
def __init__(
self,
dim,
dim_head = 64,
heads = 8,
dropout = 0,
flash = False,
qk_norm = False,
qk_norm_scale = 10
):
super().__init__()
self.heads = heads
dim_inner = dim_head * heads
scale = qk_norm_scale if qk_norm else None
self.attend = Attend(dropout, flash = flash, scale = scale)
self.qk_norm = qk_norm
if qk_norm:
self.q_norm = MultiheadRMSNorm(dim_head, heads = heads)
self.k_norm = MultiheadRMSNorm(dim_head, heads = heads)
self.to_qkv = nn.Linear(dim, dim_inner * 3, bias = False)
self.to_out = nn.Linear(dim_inner, dim, bias = False)
def forward(self, x, mask = None, rotary_emb = None):
h = self.heads
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
if self.qk_norm:
q = self.q_norm(q)
k = self.k_norm(k)
if exists(rotary_emb):
q, k = map(lambda t: apply_rotary_pos_emb(rotary_emb, t), (q, k))
out = self.attend(q, k, v, mask = mask)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
# feedforward
class GEGLU(Module):
def forward(self, x):
x, gate = x.chunk(2, dim = -1)
return F.gelu(gate) * x
def FeedForward(dim, mult = 4, dropout = 0.):
dim_inner = int(dim * mult * 2 / 3)
return nn.Sequential(
nn.Linear(dim, dim_inner * 2),
GEGLU(),
nn.Dropout(dropout),
nn.Linear(dim_inner, dim)
)
# transformer
class Transformer(Module):
def __init__(
self,
dim,
*,
depth,
dim_head = 64,
heads = 8,
ff_mult = 4,
attn_dropout = 0.,
ff_dropout = 0.,
num_register_tokens = 0.,
attn_flash = False,
adaptive_rmsnorm = False,
adaptive_rmsnorm_cond_dim_in = None,
use_unet_skip_connection = False,
skip_connect_scale = None,
attn_qk_norm = False,
use_gateloop_layers = False
):
super().__init__()
assert divisible_by(depth, 2)
self.layers = nn.ModuleList([])
self.rotary_emb = RotaryEmbedding(dim = dim_head)
self.num_register_tokens = num_register_tokens
self.has_register_tokens = num_register_tokens > 0
if self.has_register_tokens:
self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim))
if adaptive_rmsnorm:
rmsnorm_klass = partial(AdaptiveRMSNorm, cond_dim = adaptive_rmsnorm_cond_dim_in)
else:
rmsnorm_klass = RMSNorm
self.skip_connect_scale = default(skip_connect_scale, 2 ** -0.5)
for ind in range(depth):
layer = ind + 1
has_skip = use_unet_skip_connection and layer > (depth // 2)
self.layers.append(nn.ModuleList([
nn.Linear(dim * 2, dim) if has_skip else None,
# GateLoop(dim = dim) if use_gateloop_layers else None,
None,
rmsnorm_klass(dim = dim),
Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout, flash = attn_flash, qk_norm = attn_qk_norm),
rmsnorm_klass(dim = dim),
FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout)
]))
self.final_norm = RMSNorm(dim)
@property
def device(self):
return next(self.parameters()).device
def forward(
self,
x,
mask = None,
adaptive_rmsnorm_cond = None
):
batch, seq_len, *_ = x.shape
# add register tokens to the left
if self.has_register_tokens:
register_tokens = repeat(self.register_tokens, 'n d -> b n d', b = batch)
x, ps = pack([register_tokens, x], 'b * d')
if exists(mask):
mask = F.pad(mask, (self.num_register_tokens, 0), value = True)
# keep track of skip connections
skip_connects = []
# rotary embeddings
positions = seq_len
if self.has_register_tokens:
main_positions = torch.arange(seq_len, device = self.device, dtype = torch.long)
register_positions = torch.full((self.num_register_tokens,), -10000, device = self.device, dtype = torch.long)
positions = torch.cat((register_positions, main_positions))
rotary_emb = self.rotary_emb(positions)
# adaptive rmsnorm
rmsnorm_kwargs = dict()
if exists(adaptive_rmsnorm_cond):
rmsnorm_kwargs = dict(cond = adaptive_rmsnorm_cond)
# going through the attention layers
for skip_combiner, maybe_gateloop, attn_prenorm, attn, ff_prenorm, ff in self.layers:
# in the paper, they use a u-net like skip connection
# unclear how much this helps, as no ablations or further numbers given besides a brief one-two sentence mention
if not exists(skip_combiner):
skip_connects.append(x)
else:
skip_connect = skip_connects.pop() * self.skip_connect_scale
x = torch.cat((x, skip_connect), dim = -1)
x = skip_combiner(x)
if exists(maybe_gateloop):
x = maybe_gateloop(x) + x
attn_input = attn_prenorm(x, **rmsnorm_kwargs)
x = attn(attn_input, mask = mask, rotary_emb = rotary_emb) + x
ff_input = ff_prenorm(x, **rmsnorm_kwargs)
x = ff(ff_input) + x
# remove the register tokens
if self.has_register_tokens:
_, x = unpack(x, ps, 'b * d')
return self.final_norm(x)
if __name__ == '__main__':
# Initialize the Transformer
transformer = Transformer(dim=512, depth=6, dim_head=64, heads=8, ff_mult=4)
# Create random input tensor
input_tensor = torch.randn(1, 10, 512) # Assuming input shape is (batch_size, sequence_length, input_dim)
# Forward pass through the Transformer
output = transformer(input_tensor)
# Print the shape of the output
print(output.shape)
|