File size: 18,256 Bytes
8eb4303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import torch
import torch.nn.functional as F
import numpy as np
import os
from einops import rearrange
import random

from utils.commons.base_task import BaseTask
from utils.commons.dataset_utils import data_loader
from utils.commons.hparams import hparams
from utils.commons.ckpt_utils import load_ckpt
from utils.commons.tensor_utils import tensors_to_scalars, convert_to_np
from utils.nn.model_utils import print_arch, get_device_of_model, not_requires_grad
from utils.nn.schedulers import ExponentialSchedule
from utils.nn.grad import get_grad_norm
from utils.nn.model_utils import print_arch, num_params
from utils.commons.face_alignment_utils import mouth_idx_in_mediapipe_mesh

from modules.audio2motion.vae import VAEModel, PitchContourVAEModel
from tasks.os_avatar.dataset_utils.audio2motion_dataset import Audio2Motion_Dataset
from data_util.face3d_helper import Face3DHelper
from data_gen.utils.mp_feature_extractors.face_landmarker import index_lm68_from_lm478
from modules.syncnet.models import LandmarkHubertSyncNet


class Audio2MotionTask(BaseTask):
    def __init__(self):
        super().__init__()
        self.dataset_cls = Audio2Motion_Dataset
        if hparams["motion_type"] == 'id_exp':
            self.in_out_dim = 80 + 64
        elif hparams["motion_type"] == 'exp':
            self.in_out_dim = 64

    def build_model(self):
        if hparams['audio_type'] == 'hubert':
            audio_in_dim = 1024 # hubert
        elif hparams['audio_type'] == 'mfcc':
            audio_in_dim = 13 # hubert

        if hparams.get("use_pitch", False) is True:
            self.model = PitchContourVAEModel(hparams, in_out_dim=self.in_out_dim, audio_in_dim=audio_in_dim, use_prior_flow=hparams.get("use_flow", True))
        else:
            self.model = VAEModel(in_out_dim=self.in_out_dim, audio_in_dim=audio_in_dim, use_prior_flow=hparams.get("use_flow", True))
        
        if hparams.get('init_from_ckpt', '') != '': 
            ckpt_dir = hparams.get('init_from_ckpt', '')
            load_ckpt(self.model, ckpt_dir, model_name='model', strict=True)
            
        self.face3d_helper = Face3DHelper(keypoint_mode='mediapipe', use_gpu=False)
        lm_dim = 468*3 # lip part in idexp_lm3d
        # lm_dim = 20*3 # lip part in idexp_lm3d
        hparams['syncnet_num_layers_per_block'] = 3
        hparams['syncnet_base_hid_size'] = 128
        hparams['syncnet_out_hid_size'] = 1024
        self.syncnet = LandmarkHubertSyncNet(lm_dim, audio_in_dim, num_layers_per_block=hparams['syncnet_num_layers_per_block'], base_hid_size=hparams['syncnet_base_hid_size'], out_dim=hparams['syncnet_out_hid_size'])
        if hparams['syncnet_ckpt_dir']:
            load_ckpt(self.syncnet, hparams['syncnet_ckpt_dir'])
        return self.model
    
    def on_train_start(self):
        for n, m in self.model.named_children():
            num_params(m, model_name=n)
        for n, m in self.model.vae.named_children():
            num_params(m, model_name='vae.'+n)

    def build_optimizer(self, model):
        self.optimizer = optimizer = torch.optim.Adam(
            model.parameters(),
            lr=hparams['lr'],
            betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']))
        return optimizer

    def build_scheduler(self, optimizer):
        return ExponentialSchedule(optimizer, hparams['lr'], hparams['warmup_updates'])

    @data_loader
    def train_dataloader(self):
        if hparams['ds_name'] == 'Concat_voxceleb2_CMLR':
            train_dataset1 = self.dataset_cls(prefix='train', data_dir='data/binary/voxceleb2_audio2motion_kv')
            train_dataset2 = self.dataset_cls(prefix='train', data_dir='data/binary/CMLR_audio2motion_kv')
            train_dataset = BaseConcatDataset([train_dataset1,train_dataset2], prefix='train')
        elif hparams['ds_name'] == 'Weighted_Concat_voxceleb2_CMLR':
            train_dataset1 = self.dataset_cls(prefix='train', data_dir='data/binary/voxceleb2_audio2motion_kv')
            train_dataset2 = self.dataset_cls(prefix='train', data_dir='data/binary/CMLR_audio2motion_kv')
            train_dataset = WeightedConcatDataset([train_dataset1,train_dataset2], [0.5, 0.5], prefix='train')
        else:
            train_dataset = self.dataset_cls(prefix='train')
        self.train_dl = train_dataset.get_dataloader()
        return self.train_dl

    @data_loader
    def val_dataloader(self):
        val_dataset = self.dataset_cls(prefix='val')
        self.val_dl = val_dataset.get_dataloader()
        return self.val_dl

    @data_loader
    def test_dataloader(self):
        val_dataset = self.dataset_cls(prefix='val')
        self.val_dl = val_dataset.get_dataloader()
        return self.val_dl

    ##########################
    # training and validation
    ##########################
    def run_model(self, sample, infer=False, temperature=1.0, sync_batch_size=1024):
        """
        render or train on a single-frame
        :param sample: a batch of data
        :param infer: bool, run in infer mode
        :return:
            if not infer:
                return losses, model_out
            if infer:
                return model_out
        """
        model_out = {}
        if hparams['audio_type'] == 'hubert':
            sample['audio'] = sample['hubert']
        elif hparams['audio_type'] == 'mfcc':
            sample['audio'] = sample['mfcc'] / 100
        elif hparams['audio_type'] == 'mel':
            sample['audio'] = sample['mel'] # [b, 2*t, 1024]

        if hparams.get("blink_mode", 'none') != 'none': # eye_area_percnet or blink_unit
            blink = F.interpolate(sample[hparams['blink_mode']].permute(0,2,1).float(), scale_factor=2).permute(0,2,1).long()
            sample['blink'] = blink
        bs = sample['audio'].shape[0]

        if infer:
            self.model(sample, model_out, train=False, temperature=temperature)
            return model_out

        else:
            losses_out = {}
            if hparams["motion_type"] == 'id_exp':
                x_gt = torch.cat([sample['id'], sample['exp']],dim=-1)
                sample['y'] = x_gt
                self.model(sample, model_out, train=True)
                x_pred = model_out['pred'].reshape([bs, -1, 80+64])
                x_mask = model_out['mask'].reshape([bs, -1])
                losses_out['kl'] = model_out['loss_kl']
                id_pred = x_pred[:, :, :80]
                exp_pred = x_pred[:, :, 80:]
                losses_out['lap_id'] = self.lap_loss(id_pred, x_mask)
                losses_out['lap_exp'] = self.lap_loss(exp_pred, x_mask)
                pred_idexp_lm3d = self.face3d_helper.reconstruct_idexp_lm3d(id_pred, exp_pred).reshape([bs, x_mask.shape[1], -1])
                gt_idexp_lm3d = self.face3d_helper.reconstruct_idexp_lm3d(sample['id'], sample['exp']).reshape([bs, x_mask.shape[1], -1])
                losses_out['mse_idexp_lm3d'] = self.lm468_mse_loss(gt_idexp_lm3d, pred_idexp_lm3d, x_mask)
                losses_out['l2_reg_id'] = self.l2_reg_loss(id_pred, x_mask)
                losses_out['l2_reg_exp'] = self.l2_reg_loss(exp_pred, x_mask)

                gt_lm2d = self.face3d_helper.reconstruct_lm2d(sample['id'], sample['exp'], sample['euler'], sample['trans']).reshape([bs, x_mask.shape[1], -1])
                pred_lm2d = self.face3d_helper.reconstruct_lm2d(id_pred, exp_pred, sample['euler'], sample['trans']).reshape([bs, x_mask.shape[1], -1])
                losses_out['mse_lm2d'] = self.lm468_mse_loss(gt_lm2d, pred_lm2d, x_mask)

            elif hparams["motion_type"] == 'exp':
                x_gt = sample['exp']
                sample['y'] = x_gt
                self.model(sample, model_out, train=True)
                x_pred = model_out['pred'].reshape([bs, -1, 64])
                x_mask = model_out['mask'].reshape([bs, -1])
                losses_out['kl'] = model_out['loss_kl']
                exp_pred = x_pred[:, :, :]
                losses_out['lap_exp'] = self.lap_loss(exp_pred, x_mask)
                if hparams.get("ref_id_mode",'first_frame') == 'first_frame':
                    id_pred = sample['id'][:,0:1, :].repeat([1,exp_pred.shape[1],1])
                elif hparams.get("ref_id_mode",'first_frame') == 'random_frame':
                    max_y = x_mask.sum(dim=1).min().item()
                    idx = random.randint(0, max_y-1)
                    id_pred = sample['id'][:,idx:idx+1, :].repeat([1,exp_pred.shape[1],1])
                gt_idexp_lm3d = self.face3d_helper.reconstruct_idexp_lm3d(sample['id'], sample['exp']).reshape([bs, x_mask.shape[1], -1])
                pred_idexp_lm3d = self.face3d_helper.reconstruct_idexp_lm3d(id_pred, exp_pred).reshape([bs, x_mask.shape[1], -1])
                losses_out['mse_exp'] = self.mse_loss(x_gt, x_pred, x_mask)
                losses_out['mse_idexp_lm3d'] = self.lm468_mse_loss(gt_idexp_lm3d, pred_idexp_lm3d, x_mask)
                losses_out['l2_reg_exp'] = self.l2_reg_loss(exp_pred, x_mask)
            
                gt_lm2d = self.face3d_helper.reconstruct_lm2d(sample['id'], sample['exp'], sample['euler'], sample['trans']).reshape([bs, x_mask.shape[1], -1])
                pred_lm2d = self.face3d_helper.reconstruct_lm2d(id_pred, exp_pred, sample['euler'], sample['trans']).reshape([bs, x_mask.shape[1], -1])
                # losses_out['mse_lm2d'] = self.lm468_mse_loss(gt_lm2d, pred_lm2d, x_mask)

            # calculating sync score
            mouth_lm3d = pred_idexp_lm3d.reshape([bs, x_pred.shape[1], 468*3]) # [b, t, 60]
            # mouth_lm3d = pred_idexp_lm3d.reshape([bs, x_pred.shape[1], 468, 3])[:,:, index_lm68_from_lm478,:][:,:,48:68].reshape([bs, x_pred.shape[1], 20*3]) # [b, t, 60]
            
            if hparams['audio_type'] == 'hubert':
                mel = sample['hubert'] # [b, 2*t, 1024]
            elif hparams['audio_type'] == 'mfcc':
                mel = sample['mfcc'] / 100 # [b, 2*t, 1024]
            elif hparams['audio_type'] == 'mel':
                mel = sample['mel'] # [b, 2*t, 1024]

            num_clips_for_syncnet = 8096
            len_mouth_slice = 5
            len_mel_slice = len_mouth_slice * 2
            num_iters = max(1, num_clips_for_syncnet // len(mouth_lm3d))
            mouth_clip_lst = []
            mel_clip_lst = []
            x_mask_clip_lst = []
            for i in range(num_iters):
                t_start = random.randint(0, x_pred.shape[1]-len_mouth_slice-1)
                mouth_clip = mouth_lm3d[:, t_start: t_start+len_mouth_slice]
                x_mask_clip = x_mask[:, t_start: t_start+len_mouth_slice]
                assert mouth_clip.shape[1] == len_mouth_slice
                mel_clip = mel[:, t_start*2 : t_start*2+len_mel_slice]
                mouth_clip_lst.append(mouth_clip)
                mel_clip_lst.append(mel_clip)
                x_mask_clip_lst.append(x_mask_clip)
            mouth_clips = torch.cat(mouth_clip_lst) # [B=8096, T=5, 60]
            mel_clips = torch.cat(mel_clip_lst) #  # [B=8096, T=10, 1024]
            x_mask_clips = torch.cat(x_mask_clip_lst) # [B=8096, T=5]
            x_mask_clips = (x_mask_clips.sum(dim=1) == x_mask_clips.shape[1]).float() # [B=8096,]
            audio_embedding, mouth_embedding = self.syncnet.forward(mel_clips, mouth_clips) # get normalized embedding, [B,]
            sync_loss, _ = self.syncnet.cal_sync_loss(audio_embedding, mouth_embedding, 1., reduction='none') # 
            losses_out['sync_lip_lm3d'] = (sync_loss * x_mask_clips).sum() / x_mask_clips.sum()
            return losses_out, model_out
    
    def kl_annealing(self, num_updates, max_lambda=0.4, t1=2000, t2=2000):
        """
        Cyclical Annealing Schedule: A Simple Approach to Mitigating KL Vanishing
        https://aclanthology.org/N19-1021.pdf
        """
        T = t1 + t2
        num_updates = num_updates % T
        if num_updates < t1:
            return num_updates / t1 * max_lambda
        else:
            return max_lambda

    def _training_step(self, sample, batch_idx, optimizer_idx):
        loss_output, model_out = self.run_model(sample)
        loss_weights = {
            'kl': self.kl_annealing(self.global_step, max_lambda=hparams['lambda_kl'], t1=hparams['lambda_kl_t1'], t2=hparams['lambda_kl_t2']),
            'mse_exp': hparams.get("lambda_mse_exp", 0.1),
            'mse_idexp_lm3d': hparams.get("lambda_mse_lm3d", 1.),
            'lap_id': hparams.get("lambda_lap_id", 1.),
            'lap_exp': hparams.get("lambda_lap_exp", 1.),
            'l2_reg_id': hparams.get("lambda_l2_reg_id", 0.),
            'l2_reg_exp': hparams.get("lambda_l2_reg_exp", 0.0),
            'sync_lip_lm3d': hparams.get("lambda_sync_lm3d", 0.2),
            'mse_lm2d': hparams.get("lambda_mse_lm2d", 0.)
        }
        
        total_loss = sum([loss_weights.get(k, 1) * v for k, v in loss_output.items() if isinstance(v, torch.Tensor) and v.requires_grad])

        return total_loss, loss_output

    def validation_start(self):
        pass

    @torch.no_grad()
    def validation_step(self, sample, batch_idx):
        outputs = {}
        outputs['losses'] = {}
        outputs['losses'], model_out = self.run_model(sample, infer=False, sync_batch_size=10000)
        outputs = tensors_to_scalars(outputs)
        return outputs

    def validation_end(self, outputs):
        return super().validation_end(outputs)
        
    #####################
    # Testing
    #####################
    def test_start(self):
        self.gen_dir = os.path.join(hparams['work_dir'], f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}')
        os.makedirs(self.gen_dir, exist_ok=True)

    @torch.no_grad()
    def test_step(self, sample, batch_idx):
        """
        :param sample:
        :param batch_idx:
        :return:
        """
        outputs = {}
        outputs['losses'], model_out = self.run_model(sample, infer=True)
        pred_exp = model_out['pred']
        self.save_result(pred_exp,  "pred_exp_val" , self.gen_dir)
        if hparams['save_gt']:
            base_fn = f"gt_exp_val"
            self.save_result(sample['exp'],  base_fn , self.gen_dir)
        return outputs

    def test_end(self, outputs):
        pass

    @staticmethod
    def save_result(exp_arr, base_fname, gen_dir):
        exp_arr = convert_to_np(exp_arr)
        np.save(f"{gen_dir}/{base_fname}.npy", exp_arr)
    
    def get_grad(self, opt_idx):
        grad_dict = {
            'grad/model': get_grad_norm(self.model),
        }
        return grad_dict
    

    def lm468_mse_loss(self, proj_lan, gt_lan, x_mask):
        b,t,c= proj_lan.shape
        # [B, T, 68*3]
        loss = ((proj_lan - gt_lan) ** 2) * x_mask[:,:, None]
        loss = loss.reshape([b,t,468,-1])

        unmatch_mask = [93, 127, 132, 234, 323, 356, 361, 454]
        upper_eye = [161,160,159,158,157] + [388,387,386,385,384]
        eye = [33,246,161,160,159,158,157,173,133,155,154,153,145,144,163,7] + [263,466,388,387,386,385,384,398,362,382,381,380,374,373,390,249]
        inner_lip = [78,191,80,81,82,13,312,311,310,415,308,324,318,402,317,14,87,178,88,95]
        outer_lip = [61,185,40,39,37,0,267,269,270,409,291,375,321,405,314,17,84,181,91,146]

        weights = torch.ones_like(loss)
        weights[:, :, eye] = 3
        weights[:, :, upper_eye] = 20
        weights[:, :, inner_lip] = 5
        weights[:, :, outer_lip] = 5
        weights[:, :, unmatch_mask] = 0

        loss = loss.reshape([b,t,c])
        weights = weights.reshape([b,t,c])
        return (loss * weights).sum() / (x_mask.sum()*c)
    
    def lm68_mse_loss(self, proj_lan, gt_lan, x_mask):
        b,t,c= proj_lan.shape
        # [B, T, 68*3]
        loss = ((proj_lan - gt_lan) ** 2) * x_mask[:,:, None]
        loss = loss.reshape([b,t,68,3])

        weights = torch.ones_like(loss)
        weights[:, :, 36:48, :] = 5 # eye 12 points
        weights[:, :, -8:, :] =  5 # inner lip 8 points
        weights[:, :, 28:31, :] =  5 # nose 3 points
        loss = loss.reshape([b,t,c])
        weights = weights.reshape([b,t,c])
        return (loss * weights).sum() / (x_mask.sum()*c)
    
    def l2_reg_loss(self, x_pred, x_mask):
        # mean absolute error, l1 loss
        error = (x_pred ** 2) * x_mask[:,:, None]
        num_frame = x_mask.sum()
        return error.sum() / (num_frame * self.in_out_dim)

    def lap_loss(self, in_tensor, x_mask):
        # [b, t, c]
        b,t,c = in_tensor.shape
        in_tensor = F.pad(in_tensor, pad=(0,0,1,1))
        in_tensor = rearrange(in_tensor, "b t c -> (b c) t").unsqueeze(1) # [B*c, 1, t]
        lap_kernel = torch.Tensor((-0.5, 1.0, -0.5)).reshape([1,1,3]).float().to(in_tensor.device) # [1, 1, kw]
        out_tensor = F.conv1d(in_tensor, lap_kernel) # [B*C, 1, T]
        out_tensor = out_tensor.squeeze(1)
        out_tensor = rearrange(out_tensor, "(b c) t -> b t c", b=b, t=t)
        loss_lap = (out_tensor**2) * x_mask.unsqueeze(-1)
        return loss_lap.sum() / (x_mask.sum()*c)

    def mse_loss(self, x_gt, x_pred, x_mask):
        # mean squared error, l2 loss
        error = (x_pred - x_gt) * x_mask[:,:, None]
        num_frame = x_mask.sum()
        return (error ** 2).sum() / (num_frame * self.in_out_dim)
    
    def mae_loss(self, x_gt, x_pred, x_mask):
        # mean absolute error, l1 loss
        error = (x_pred - x_gt) * x_mask[:,:, None]
        num_frame = x_mask.sum()
        return error.abs().sum() / (num_frame * self.in_out_dim)
    
    def vel_loss(self, x_pred, x_mask):
        # mean squared error, l2 loss
        error = (x_pred[:, 1:] - x_pred[:, :-1]) * x_mask[:,1:, None]
        num_frame = x_mask.sum()
        return (error).abs().sum() / (num_frame * self.in_out_dim)
    
    def continuity_loss(self, x_gt, x_pred, x_mask):
        # continuity loss, borrowed from <FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning>
        diff_x_pred = x_pred[:,1:] - x_pred[:,:-1]
        diff_x_gt = x_gt[:,1:] - x_gt[:,:-1]
        error = (diff_x_pred[:,:,:] - diff_x_gt[:,:,:]) * x_mask[:,1:,None]
        init_error = x_pred[:,0,:] - x_gt[:,0,:]
        num_frame = x_mask.sum()
        return (error.pow(2).sum() + init_error.pow(2).sum()) / (num_frame * self.in_out_dim)