Spaces:
Build error
Build error
File size: 18,256 Bytes
8eb4303 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import torch
import torch.nn.functional as F
import numpy as np
import os
from einops import rearrange
import random
from utils.commons.base_task import BaseTask
from utils.commons.dataset_utils import data_loader
from utils.commons.hparams import hparams
from utils.commons.ckpt_utils import load_ckpt
from utils.commons.tensor_utils import tensors_to_scalars, convert_to_np
from utils.nn.model_utils import print_arch, get_device_of_model, not_requires_grad
from utils.nn.schedulers import ExponentialSchedule
from utils.nn.grad import get_grad_norm
from utils.nn.model_utils import print_arch, num_params
from utils.commons.face_alignment_utils import mouth_idx_in_mediapipe_mesh
from modules.audio2motion.vae import VAEModel, PitchContourVAEModel
from tasks.os_avatar.dataset_utils.audio2motion_dataset import Audio2Motion_Dataset
from data_util.face3d_helper import Face3DHelper
from data_gen.utils.mp_feature_extractors.face_landmarker import index_lm68_from_lm478
from modules.syncnet.models import LandmarkHubertSyncNet
class Audio2MotionTask(BaseTask):
def __init__(self):
super().__init__()
self.dataset_cls = Audio2Motion_Dataset
if hparams["motion_type"] == 'id_exp':
self.in_out_dim = 80 + 64
elif hparams["motion_type"] == 'exp':
self.in_out_dim = 64
def build_model(self):
if hparams['audio_type'] == 'hubert':
audio_in_dim = 1024 # hubert
elif hparams['audio_type'] == 'mfcc':
audio_in_dim = 13 # hubert
if hparams.get("use_pitch", False) is True:
self.model = PitchContourVAEModel(hparams, in_out_dim=self.in_out_dim, audio_in_dim=audio_in_dim, use_prior_flow=hparams.get("use_flow", True))
else:
self.model = VAEModel(in_out_dim=self.in_out_dim, audio_in_dim=audio_in_dim, use_prior_flow=hparams.get("use_flow", True))
if hparams.get('init_from_ckpt', '') != '':
ckpt_dir = hparams.get('init_from_ckpt', '')
load_ckpt(self.model, ckpt_dir, model_name='model', strict=True)
self.face3d_helper = Face3DHelper(keypoint_mode='mediapipe', use_gpu=False)
lm_dim = 468*3 # lip part in idexp_lm3d
# lm_dim = 20*3 # lip part in idexp_lm3d
hparams['syncnet_num_layers_per_block'] = 3
hparams['syncnet_base_hid_size'] = 128
hparams['syncnet_out_hid_size'] = 1024
self.syncnet = LandmarkHubertSyncNet(lm_dim, audio_in_dim, num_layers_per_block=hparams['syncnet_num_layers_per_block'], base_hid_size=hparams['syncnet_base_hid_size'], out_dim=hparams['syncnet_out_hid_size'])
if hparams['syncnet_ckpt_dir']:
load_ckpt(self.syncnet, hparams['syncnet_ckpt_dir'])
return self.model
def on_train_start(self):
for n, m in self.model.named_children():
num_params(m, model_name=n)
for n, m in self.model.vae.named_children():
num_params(m, model_name='vae.'+n)
def build_optimizer(self, model):
self.optimizer = optimizer = torch.optim.Adam(
model.parameters(),
lr=hparams['lr'],
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']))
return optimizer
def build_scheduler(self, optimizer):
return ExponentialSchedule(optimizer, hparams['lr'], hparams['warmup_updates'])
@data_loader
def train_dataloader(self):
if hparams['ds_name'] == 'Concat_voxceleb2_CMLR':
train_dataset1 = self.dataset_cls(prefix='train', data_dir='data/binary/voxceleb2_audio2motion_kv')
train_dataset2 = self.dataset_cls(prefix='train', data_dir='data/binary/CMLR_audio2motion_kv')
train_dataset = BaseConcatDataset([train_dataset1,train_dataset2], prefix='train')
elif hparams['ds_name'] == 'Weighted_Concat_voxceleb2_CMLR':
train_dataset1 = self.dataset_cls(prefix='train', data_dir='data/binary/voxceleb2_audio2motion_kv')
train_dataset2 = self.dataset_cls(prefix='train', data_dir='data/binary/CMLR_audio2motion_kv')
train_dataset = WeightedConcatDataset([train_dataset1,train_dataset2], [0.5, 0.5], prefix='train')
else:
train_dataset = self.dataset_cls(prefix='train')
self.train_dl = train_dataset.get_dataloader()
return self.train_dl
@data_loader
def val_dataloader(self):
val_dataset = self.dataset_cls(prefix='val')
self.val_dl = val_dataset.get_dataloader()
return self.val_dl
@data_loader
def test_dataloader(self):
val_dataset = self.dataset_cls(prefix='val')
self.val_dl = val_dataset.get_dataloader()
return self.val_dl
##########################
# training and validation
##########################
def run_model(self, sample, infer=False, temperature=1.0, sync_batch_size=1024):
"""
render or train on a single-frame
:param sample: a batch of data
:param infer: bool, run in infer mode
:return:
if not infer:
return losses, model_out
if infer:
return model_out
"""
model_out = {}
if hparams['audio_type'] == 'hubert':
sample['audio'] = sample['hubert']
elif hparams['audio_type'] == 'mfcc':
sample['audio'] = sample['mfcc'] / 100
elif hparams['audio_type'] == 'mel':
sample['audio'] = sample['mel'] # [b, 2*t, 1024]
if hparams.get("blink_mode", 'none') != 'none': # eye_area_percnet or blink_unit
blink = F.interpolate(sample[hparams['blink_mode']].permute(0,2,1).float(), scale_factor=2).permute(0,2,1).long()
sample['blink'] = blink
bs = sample['audio'].shape[0]
if infer:
self.model(sample, model_out, train=False, temperature=temperature)
return model_out
else:
losses_out = {}
if hparams["motion_type"] == 'id_exp':
x_gt = torch.cat([sample['id'], sample['exp']],dim=-1)
sample['y'] = x_gt
self.model(sample, model_out, train=True)
x_pred = model_out['pred'].reshape([bs, -1, 80+64])
x_mask = model_out['mask'].reshape([bs, -1])
losses_out['kl'] = model_out['loss_kl']
id_pred = x_pred[:, :, :80]
exp_pred = x_pred[:, :, 80:]
losses_out['lap_id'] = self.lap_loss(id_pred, x_mask)
losses_out['lap_exp'] = self.lap_loss(exp_pred, x_mask)
pred_idexp_lm3d = self.face3d_helper.reconstruct_idexp_lm3d(id_pred, exp_pred).reshape([bs, x_mask.shape[1], -1])
gt_idexp_lm3d = self.face3d_helper.reconstruct_idexp_lm3d(sample['id'], sample['exp']).reshape([bs, x_mask.shape[1], -1])
losses_out['mse_idexp_lm3d'] = self.lm468_mse_loss(gt_idexp_lm3d, pred_idexp_lm3d, x_mask)
losses_out['l2_reg_id'] = self.l2_reg_loss(id_pred, x_mask)
losses_out['l2_reg_exp'] = self.l2_reg_loss(exp_pred, x_mask)
gt_lm2d = self.face3d_helper.reconstruct_lm2d(sample['id'], sample['exp'], sample['euler'], sample['trans']).reshape([bs, x_mask.shape[1], -1])
pred_lm2d = self.face3d_helper.reconstruct_lm2d(id_pred, exp_pred, sample['euler'], sample['trans']).reshape([bs, x_mask.shape[1], -1])
losses_out['mse_lm2d'] = self.lm468_mse_loss(gt_lm2d, pred_lm2d, x_mask)
elif hparams["motion_type"] == 'exp':
x_gt = sample['exp']
sample['y'] = x_gt
self.model(sample, model_out, train=True)
x_pred = model_out['pred'].reshape([bs, -1, 64])
x_mask = model_out['mask'].reshape([bs, -1])
losses_out['kl'] = model_out['loss_kl']
exp_pred = x_pred[:, :, :]
losses_out['lap_exp'] = self.lap_loss(exp_pred, x_mask)
if hparams.get("ref_id_mode",'first_frame') == 'first_frame':
id_pred = sample['id'][:,0:1, :].repeat([1,exp_pred.shape[1],1])
elif hparams.get("ref_id_mode",'first_frame') == 'random_frame':
max_y = x_mask.sum(dim=1).min().item()
idx = random.randint(0, max_y-1)
id_pred = sample['id'][:,idx:idx+1, :].repeat([1,exp_pred.shape[1],1])
gt_idexp_lm3d = self.face3d_helper.reconstruct_idexp_lm3d(sample['id'], sample['exp']).reshape([bs, x_mask.shape[1], -1])
pred_idexp_lm3d = self.face3d_helper.reconstruct_idexp_lm3d(id_pred, exp_pred).reshape([bs, x_mask.shape[1], -1])
losses_out['mse_exp'] = self.mse_loss(x_gt, x_pred, x_mask)
losses_out['mse_idexp_lm3d'] = self.lm468_mse_loss(gt_idexp_lm3d, pred_idexp_lm3d, x_mask)
losses_out['l2_reg_exp'] = self.l2_reg_loss(exp_pred, x_mask)
gt_lm2d = self.face3d_helper.reconstruct_lm2d(sample['id'], sample['exp'], sample['euler'], sample['trans']).reshape([bs, x_mask.shape[1], -1])
pred_lm2d = self.face3d_helper.reconstruct_lm2d(id_pred, exp_pred, sample['euler'], sample['trans']).reshape([bs, x_mask.shape[1], -1])
# losses_out['mse_lm2d'] = self.lm468_mse_loss(gt_lm2d, pred_lm2d, x_mask)
# calculating sync score
mouth_lm3d = pred_idexp_lm3d.reshape([bs, x_pred.shape[1], 468*3]) # [b, t, 60]
# mouth_lm3d = pred_idexp_lm3d.reshape([bs, x_pred.shape[1], 468, 3])[:,:, index_lm68_from_lm478,:][:,:,48:68].reshape([bs, x_pred.shape[1], 20*3]) # [b, t, 60]
if hparams['audio_type'] == 'hubert':
mel = sample['hubert'] # [b, 2*t, 1024]
elif hparams['audio_type'] == 'mfcc':
mel = sample['mfcc'] / 100 # [b, 2*t, 1024]
elif hparams['audio_type'] == 'mel':
mel = sample['mel'] # [b, 2*t, 1024]
num_clips_for_syncnet = 8096
len_mouth_slice = 5
len_mel_slice = len_mouth_slice * 2
num_iters = max(1, num_clips_for_syncnet // len(mouth_lm3d))
mouth_clip_lst = []
mel_clip_lst = []
x_mask_clip_lst = []
for i in range(num_iters):
t_start = random.randint(0, x_pred.shape[1]-len_mouth_slice-1)
mouth_clip = mouth_lm3d[:, t_start: t_start+len_mouth_slice]
x_mask_clip = x_mask[:, t_start: t_start+len_mouth_slice]
assert mouth_clip.shape[1] == len_mouth_slice
mel_clip = mel[:, t_start*2 : t_start*2+len_mel_slice]
mouth_clip_lst.append(mouth_clip)
mel_clip_lst.append(mel_clip)
x_mask_clip_lst.append(x_mask_clip)
mouth_clips = torch.cat(mouth_clip_lst) # [B=8096, T=5, 60]
mel_clips = torch.cat(mel_clip_lst) # # [B=8096, T=10, 1024]
x_mask_clips = torch.cat(x_mask_clip_lst) # [B=8096, T=5]
x_mask_clips = (x_mask_clips.sum(dim=1) == x_mask_clips.shape[1]).float() # [B=8096,]
audio_embedding, mouth_embedding = self.syncnet.forward(mel_clips, mouth_clips) # get normalized embedding, [B,]
sync_loss, _ = self.syncnet.cal_sync_loss(audio_embedding, mouth_embedding, 1., reduction='none') #
losses_out['sync_lip_lm3d'] = (sync_loss * x_mask_clips).sum() / x_mask_clips.sum()
return losses_out, model_out
def kl_annealing(self, num_updates, max_lambda=0.4, t1=2000, t2=2000):
"""
Cyclical Annealing Schedule: A Simple Approach to Mitigating KL Vanishing
https://aclanthology.org/N19-1021.pdf
"""
T = t1 + t2
num_updates = num_updates % T
if num_updates < t1:
return num_updates / t1 * max_lambda
else:
return max_lambda
def _training_step(self, sample, batch_idx, optimizer_idx):
loss_output, model_out = self.run_model(sample)
loss_weights = {
'kl': self.kl_annealing(self.global_step, max_lambda=hparams['lambda_kl'], t1=hparams['lambda_kl_t1'], t2=hparams['lambda_kl_t2']),
'mse_exp': hparams.get("lambda_mse_exp", 0.1),
'mse_idexp_lm3d': hparams.get("lambda_mse_lm3d", 1.),
'lap_id': hparams.get("lambda_lap_id", 1.),
'lap_exp': hparams.get("lambda_lap_exp", 1.),
'l2_reg_id': hparams.get("lambda_l2_reg_id", 0.),
'l2_reg_exp': hparams.get("lambda_l2_reg_exp", 0.0),
'sync_lip_lm3d': hparams.get("lambda_sync_lm3d", 0.2),
'mse_lm2d': hparams.get("lambda_mse_lm2d", 0.)
}
total_loss = sum([loss_weights.get(k, 1) * v for k, v in loss_output.items() if isinstance(v, torch.Tensor) and v.requires_grad])
return total_loss, loss_output
def validation_start(self):
pass
@torch.no_grad()
def validation_step(self, sample, batch_idx):
outputs = {}
outputs['losses'] = {}
outputs['losses'], model_out = self.run_model(sample, infer=False, sync_batch_size=10000)
outputs = tensors_to_scalars(outputs)
return outputs
def validation_end(self, outputs):
return super().validation_end(outputs)
#####################
# Testing
#####################
def test_start(self):
self.gen_dir = os.path.join(hparams['work_dir'], f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}')
os.makedirs(self.gen_dir, exist_ok=True)
@torch.no_grad()
def test_step(self, sample, batch_idx):
"""
:param sample:
:param batch_idx:
:return:
"""
outputs = {}
outputs['losses'], model_out = self.run_model(sample, infer=True)
pred_exp = model_out['pred']
self.save_result(pred_exp, "pred_exp_val" , self.gen_dir)
if hparams['save_gt']:
base_fn = f"gt_exp_val"
self.save_result(sample['exp'], base_fn , self.gen_dir)
return outputs
def test_end(self, outputs):
pass
@staticmethod
def save_result(exp_arr, base_fname, gen_dir):
exp_arr = convert_to_np(exp_arr)
np.save(f"{gen_dir}/{base_fname}.npy", exp_arr)
def get_grad(self, opt_idx):
grad_dict = {
'grad/model': get_grad_norm(self.model),
}
return grad_dict
def lm468_mse_loss(self, proj_lan, gt_lan, x_mask):
b,t,c= proj_lan.shape
# [B, T, 68*3]
loss = ((proj_lan - gt_lan) ** 2) * x_mask[:,:, None]
loss = loss.reshape([b,t,468,-1])
unmatch_mask = [93, 127, 132, 234, 323, 356, 361, 454]
upper_eye = [161,160,159,158,157] + [388,387,386,385,384]
eye = [33,246,161,160,159,158,157,173,133,155,154,153,145,144,163,7] + [263,466,388,387,386,385,384,398,362,382,381,380,374,373,390,249]
inner_lip = [78,191,80,81,82,13,312,311,310,415,308,324,318,402,317,14,87,178,88,95]
outer_lip = [61,185,40,39,37,0,267,269,270,409,291,375,321,405,314,17,84,181,91,146]
weights = torch.ones_like(loss)
weights[:, :, eye] = 3
weights[:, :, upper_eye] = 20
weights[:, :, inner_lip] = 5
weights[:, :, outer_lip] = 5
weights[:, :, unmatch_mask] = 0
loss = loss.reshape([b,t,c])
weights = weights.reshape([b,t,c])
return (loss * weights).sum() / (x_mask.sum()*c)
def lm68_mse_loss(self, proj_lan, gt_lan, x_mask):
b,t,c= proj_lan.shape
# [B, T, 68*3]
loss = ((proj_lan - gt_lan) ** 2) * x_mask[:,:, None]
loss = loss.reshape([b,t,68,3])
weights = torch.ones_like(loss)
weights[:, :, 36:48, :] = 5 # eye 12 points
weights[:, :, -8:, :] = 5 # inner lip 8 points
weights[:, :, 28:31, :] = 5 # nose 3 points
loss = loss.reshape([b,t,c])
weights = weights.reshape([b,t,c])
return (loss * weights).sum() / (x_mask.sum()*c)
def l2_reg_loss(self, x_pred, x_mask):
# mean absolute error, l1 loss
error = (x_pred ** 2) * x_mask[:,:, None]
num_frame = x_mask.sum()
return error.sum() / (num_frame * self.in_out_dim)
def lap_loss(self, in_tensor, x_mask):
# [b, t, c]
b,t,c = in_tensor.shape
in_tensor = F.pad(in_tensor, pad=(0,0,1,1))
in_tensor = rearrange(in_tensor, "b t c -> (b c) t").unsqueeze(1) # [B*c, 1, t]
lap_kernel = torch.Tensor((-0.5, 1.0, -0.5)).reshape([1,1,3]).float().to(in_tensor.device) # [1, 1, kw]
out_tensor = F.conv1d(in_tensor, lap_kernel) # [B*C, 1, T]
out_tensor = out_tensor.squeeze(1)
out_tensor = rearrange(out_tensor, "(b c) t -> b t c", b=b, t=t)
loss_lap = (out_tensor**2) * x_mask.unsqueeze(-1)
return loss_lap.sum() / (x_mask.sum()*c)
def mse_loss(self, x_gt, x_pred, x_mask):
# mean squared error, l2 loss
error = (x_pred - x_gt) * x_mask[:,:, None]
num_frame = x_mask.sum()
return (error ** 2).sum() / (num_frame * self.in_out_dim)
def mae_loss(self, x_gt, x_pred, x_mask):
# mean absolute error, l1 loss
error = (x_pred - x_gt) * x_mask[:,:, None]
num_frame = x_mask.sum()
return error.abs().sum() / (num_frame * self.in_out_dim)
def vel_loss(self, x_pred, x_mask):
# mean squared error, l2 loss
error = (x_pred[:, 1:] - x_pred[:, :-1]) * x_mask[:,1:, None]
num_frame = x_mask.sum()
return (error).abs().sum() / (num_frame * self.in_out_dim)
def continuity_loss(self, x_gt, x_pred, x_mask):
# continuity loss, borrowed from <FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning>
diff_x_pred = x_pred[:,1:] - x_pred[:,:-1]
diff_x_gt = x_gt[:,1:] - x_gt[:,:-1]
error = (diff_x_pred[:,:,:] - diff_x_gt[:,:,:]) * x_mask[:,1:,None]
init_error = x_pred[:,0,:] - x_gt[:,0,:]
num_frame = x_mask.sum()
return (error.pow(2).sum() + init_error.pow(2).sum()) / (num_frame * self.in_out_dim) |