Spaces:
Build error
Build error
import os | |
import numpy as np | |
import math | |
import json | |
import imageio | |
import torch | |
import tqdm | |
import cv2 | |
from data_util.face3d_helper import Face3DHelper | |
from utils.commons.euler2rot import euler_trans_2_c2w, c2w_to_euler_trans | |
from data_gen.utils.process_video.euler2quaterion import euler2quaterion, quaterion2euler | |
from deep_3drecon.deep_3drecon_models.bfm import ParametricFaceModel | |
def euler2rot(euler_angle): | |
batch_size = euler_angle.shape[0] | |
theta = euler_angle[:, 0].reshape(-1, 1, 1) | |
phi = euler_angle[:, 1].reshape(-1, 1, 1) | |
psi = euler_angle[:, 2].reshape(-1, 1, 1) | |
one = torch.ones(batch_size, 1, 1).to(euler_angle.device) | |
zero = torch.zeros(batch_size, 1, 1).to(euler_angle.device) | |
rot_x = torch.cat(( | |
torch.cat((one, zero, zero), 1), | |
torch.cat((zero, theta.cos(), theta.sin()), 1), | |
torch.cat((zero, -theta.sin(), theta.cos()), 1), | |
), 2) | |
rot_y = torch.cat(( | |
torch.cat((phi.cos(), zero, -phi.sin()), 1), | |
torch.cat((zero, one, zero), 1), | |
torch.cat((phi.sin(), zero, phi.cos()), 1), | |
), 2) | |
rot_z = torch.cat(( | |
torch.cat((psi.cos(), -psi.sin(), zero), 1), | |
torch.cat((psi.sin(), psi.cos(), zero), 1), | |
torch.cat((zero, zero, one), 1) | |
), 2) | |
return torch.bmm(rot_x, torch.bmm(rot_y, rot_z)) | |
def rot2euler(rot_mat): | |
batch_size = len(rot_mat) | |
# we assert that y in in [-0.5pi, 0.5pi] | |
cos_y = torch.sqrt(rot_mat[:, 1, 2] * rot_mat[:, 1, 2] + rot_mat[:, 2, 2] * rot_mat[:, 2, 2]) | |
theta_x = torch.atan2(-rot_mat[:, 1, 2], rot_mat[:, 2, 2]) | |
theta_y = torch.atan2(rot_mat[:, 2, 0], cos_y) | |
theta_z = torch.atan2(rot_mat[:, 0, 1], rot_mat[:, 0, 0]) | |
euler_angles = torch.zeros([batch_size, 3]) | |
euler_angles[:, 0] = theta_x | |
euler_angles[:, 1] = theta_y | |
euler_angles[:, 2] = theta_z | |
return euler_angles | |
index_lm68_from_lm468 = [127,234,93,132,58,136,150,176,152,400,379,365,288,361,323,454,356,70,63,105,66,107,336,296,334,293,300,168,197,5,4,75,97,2,326,305, | |
33,160,158,133,153,144,362,385,387,263,373,380,61,40,37,0,267,270,291,321,314,17,84,91,78,81,13,311,308,402,14,178] | |
def plot_lm2d(lm2d): | |
WH = 512 | |
img = np.ones([WH, WH, 3], dtype=np.uint8) * 255 | |
for i in range(len(lm2d)): | |
x, y = lm2d[i] | |
color = (255,0,0) | |
img = cv2.circle(img, center=(int(x),int(y)), radius=3, color=color, thickness=-1) | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
for i in range(len(lm2d)): | |
x, y = lm2d[i] | |
img = cv2.putText(img, f"{i}", org=(int(x),int(y)), fontFace=font, fontScale=0.3, color=(255,0,0)) | |
return img | |
def get_face_rect(lms, h, w): | |
""" | |
lms: [68, 2] | |
h, w: int | |
return: [4,] | |
""" | |
assert len(lms) == 68 | |
# min_x, max_x = np.min(lms, 0)[0], np.max(lms, 0)[0] | |
min_x, max_x = np.min(lms[:, 0]), np.max(lms[:, 0]) | |
cx = int((min_x+max_x)/2.0) | |
cy = int(lms[27, 1]) | |
h_w = int((max_x-cx)*1.5) | |
h_h = int((lms[8, 1]-cy)*1.15) | |
rect_x = cx - h_w | |
rect_y = cy - h_h | |
if rect_x < 0: | |
rect_x = 0 | |
if rect_y < 0: | |
rect_y = 0 | |
rect_w = min(w-1-rect_x, 2*h_w) | |
rect_h = min(h-1-rect_y, 2*h_h) | |
# rect = np.array((rect_x, rect_y, rect_w, rect_h), dtype=np.int32) | |
# rect = [rect_x, rect_y, rect_w, rect_h] | |
rect = [rect_x, rect_x + rect_w, rect_y, rect_y + rect_h] # min_j, max_j, min_i, max_i | |
return rect # this x is width, y is height | |
def get_lip_rect(lms, h, w): | |
""" | |
lms: [68, 2] | |
h, w: int | |
return: [4,] | |
""" | |
# this x is width, y is height | |
# for lms, lms[:, 0] is width, lms[:, 1] is height | |
assert len(lms) == 68 | |
lips = slice(48, 60) | |
lms = lms[lips] | |
min_x, max_x = np.min(lms[:, 0]), np.max(lms[:, 0]) | |
min_y, max_y = np.min(lms[:, 1]), np.max(lms[:, 1]) | |
cx = int((min_x+max_x)/2.0) | |
cy = int((min_y+max_y)/2.0) | |
h_w = int((max_x-cx)*1.2) | |
h_h = int((max_y-cy)*1.2) | |
h_w = max(h_w, h_h) | |
h_h = h_w | |
rect_x = cx - h_w | |
rect_y = cy - h_h | |
rect_w = 2*h_w | |
rect_h = 2*h_h | |
if rect_x < 0: | |
rect_x = 0 | |
if rect_y < 0: | |
rect_y = 0 | |
if rect_x + rect_w > w: | |
rect_x = w - rect_w | |
if rect_y + rect_h > h: | |
rect_y = h - rect_h | |
rect = [rect_x, rect_x + rect_w, rect_y, rect_y + rect_h] # min_j, max_j, min_i, max_i | |
return rect # this x is width, y is height | |
# def get_lip_rect(lms, h, w): | |
# """ | |
# lms: [68, 2] | |
# h, w: int | |
# return: [4,] | |
# """ | |
# assert len(lms) == 68 | |
# lips = slice(48, 60) | |
# # this x is width, y is height | |
# xmin, xmax = int(lms[lips, 1].min()), int(lms[lips, 1].max()) | |
# ymin, ymax = int(lms[lips, 0].min()), int(lms[lips, 0].max()) | |
# # padding to H == W | |
# cx = (xmin + xmax) // 2 | |
# cy = (ymin + ymax) // 2 | |
# l = max(xmax - xmin, ymax - ymin) // 2 | |
# xmin = max(0, cx - l) | |
# xmax = min(h, cx + l) | |
# ymin = max(0, cy - l) | |
# ymax = min(w, cy + l) | |
# lip_rect = [xmin, xmax, ymin, ymax] | |
# return lip_rect | |
def get_win_conds(conds, idx, smo_win_size=8, pad_option='zero'): | |
""" | |
conds: [b, t=16, h=29] | |
idx: long, time index of the selected frame | |
""" | |
idx = max(0, idx) | |
idx = min(idx, conds.shape[0]-1) | |
smo_half_win_size = smo_win_size//2 | |
left_i = idx - smo_half_win_size | |
right_i = idx + (smo_win_size - smo_half_win_size) | |
pad_left, pad_right = 0, 0 | |
if left_i < 0: | |
pad_left = -left_i | |
left_i = 0 | |
if right_i > conds.shape[0]: | |
pad_right = right_i - conds.shape[0] | |
right_i = conds.shape[0] | |
conds_win = conds[left_i:right_i] | |
if pad_left > 0: | |
if pad_option == 'zero': | |
conds_win = np.concatenate([np.zeros_like(conds_win)[:pad_left], conds_win], axis=0) | |
elif pad_option == 'edge': | |
edge_value = conds[0][np.newaxis, ...] | |
conds_win = np.concatenate([edge_value] * pad_left + [conds_win], axis=0) | |
else: | |
raise NotImplementedError | |
if pad_right > 0: | |
if pad_option == 'zero': | |
conds_win = np.concatenate([conds_win, np.zeros_like(conds_win)[:pad_right]], axis=0) | |
elif pad_option == 'edge': | |
edge_value = conds[-1][np.newaxis, ...] | |
conds_win = np.concatenate([conds_win] + [edge_value] * pad_right , axis=0) | |
else: | |
raise NotImplementedError | |
assert conds_win.shape[0] == smo_win_size | |
return conds_win | |
def load_processed_data(processed_dir): | |
# load necessary files | |
background_img_name = os.path.join(processed_dir, "bg.jpg") | |
assert os.path.exists(background_img_name) | |
head_img_dir = os.path.join(processed_dir, "head_imgs") | |
torso_img_dir = os.path.join(processed_dir, "inpaint_torso_imgs") | |
gt_img_dir = os.path.join(processed_dir, "gt_imgs") | |
hubert_npy_name = os.path.join(processed_dir, "aud_hubert.npy") | |
mel_f0_npy_name = os.path.join(processed_dir, "aud_mel_f0.npy") | |
coeff_npy_name = os.path.join(processed_dir, "coeff_fit_mp.npy") | |
lm2d_npy_name = os.path.join(processed_dir, "lms_2d.npy") | |
ret_dict = {} | |
ret_dict['bg_img'] = imageio.imread(background_img_name) | |
ret_dict['H'], ret_dict['W'] = ret_dict['bg_img'].shape[:2] | |
ret_dict['focal'], ret_dict['cx'], ret_dict['cy'] = face_model.focal, face_model.center, face_model.center | |
print("loading lm2d coeff ...") | |
lm2d_arr = np.load(lm2d_npy_name) | |
face_rect_lst = [] | |
lip_rect_lst = [] | |
for lm2d in lm2d_arr: | |
if len(lm2d) in [468, 478]: | |
lm2d = lm2d[index_lm68_from_lm468] | |
face_rect = get_face_rect(lm2d, ret_dict['H'], ret_dict['W']) | |
lip_rect = get_lip_rect(lm2d, ret_dict['H'], ret_dict['W']) | |
face_rect_lst.append(face_rect) | |
lip_rect_lst.append(lip_rect) | |
face_rects = np.stack(face_rect_lst, axis=0) # [T, 4] | |
print("loading fitted 3dmm coeff ...") | |
coeff_dict = np.load(coeff_npy_name, allow_pickle=True).tolist() | |
identity_arr = coeff_dict['id'] | |
exp_arr = coeff_dict['exp'] | |
ret_dict['id'] = identity_arr | |
ret_dict['exp'] = exp_arr | |
euler_arr = ret_dict['euler'] = coeff_dict['euler'] | |
trans_arr = ret_dict['trans'] = coeff_dict['trans'] | |
print("calculating lm3d ...") | |
idexp_lm3d_arr = face3d_helper.reconstruct_idexp_lm3d(torch.from_numpy(identity_arr), torch.from_numpy(exp_arr)).cpu().numpy().reshape([-1, 68*3]) | |
len_motion = len(idexp_lm3d_arr) | |
video_idexp_lm3d_mean = idexp_lm3d_arr.mean(axis=0) | |
video_idexp_lm3d_std = idexp_lm3d_arr.std(axis=0) | |
ret_dict['idexp_lm3d'] = idexp_lm3d_arr | |
ret_dict['idexp_lm3d_mean'] = video_idexp_lm3d_mean | |
ret_dict['idexp_lm3d_std'] = video_idexp_lm3d_std | |
# now we convert the euler_trans from deep3d convention to adnerf convention | |
eulers = torch.FloatTensor(euler_arr) | |
trans = torch.FloatTensor(trans_arr) | |
rots = face_model.compute_rotation(eulers) # rotation matrix is a better intermediate for convention-transplan than euler | |
# handle the camera pose to geneface's convention | |
trans[:, 2] = 10 - trans[:, 2] # 抵消fit阶段的to_camera操作,即trans[...,2] = 10 - trans[...,2] | |
rots = rots.permute(0, 2, 1) | |
trans[:, 2] = - trans[:,2] # 因为intrinsic proj不同 | |
# below is the NeRF camera preprocessing strategy, see `save_transforms` in data_util/process.py | |
trans = trans / 10.0 | |
rots_inv = rots.permute(0, 2, 1) | |
trans_inv = - torch.bmm(rots_inv, trans.unsqueeze(2)) | |
pose = torch.eye(4, dtype=torch.float32).unsqueeze(0).repeat([len_motion, 1, 1]) # [T, 4, 4] | |
pose[:, :3, :3] = rots_inv | |
pose[:, :3, 3] = trans_inv[:, :, 0] | |
c2w_transform_matrices = pose.numpy() | |
# process the audio features used for postnet training | |
print("loading hubert ...") | |
hubert_features = np.load(hubert_npy_name) | |
print("loading Mel and F0 ...") | |
mel_f0_features = np.load(mel_f0_npy_name, allow_pickle=True).tolist() | |
ret_dict['hubert'] = hubert_features | |
ret_dict['mel'] = mel_f0_features['mel'] | |
ret_dict['f0'] = mel_f0_features['f0'] | |
# obtaining train samples | |
frame_indices = list(range(len_motion)) | |
num_train = len_motion // 11 * 10 | |
train_indices = frame_indices[:num_train] | |
val_indices = frame_indices[num_train:] | |
for split in ['train', 'val']: | |
if split == 'train': | |
indices = train_indices | |
samples = [] | |
ret_dict['train_samples'] = samples | |
elif split == 'val': | |
indices = val_indices | |
samples = [] | |
ret_dict['val_samples'] = samples | |
for idx in indices: | |
sample = {} | |
sample['idx'] = idx | |
sample['head_img_fname'] = os.path.join(head_img_dir,f"{idx:08d}.png") | |
sample['torso_img_fname'] = os.path.join(torso_img_dir,f"{idx:08d}.png") | |
sample['gt_img_fname'] = os.path.join(gt_img_dir,f"{idx:08d}.jpg") | |
# assert os.path.exists(sample['head_img_fname']) and os.path.exists(sample['torso_img_fname']) and os.path.exists(sample['gt_img_fname']) | |
sample['face_rect'] = face_rects[idx] | |
sample['lip_rect'] = lip_rect_lst[idx] | |
sample['c2w'] = c2w_transform_matrices[idx] | |
samples.append(sample) | |
return ret_dict | |
class Binarizer: | |
def __init__(self): | |
self.data_dir = 'data/' | |
def parse(self, video_id): | |
processed_dir = os.path.join(self.data_dir, 'processed/videos', video_id) | |
binary_dir = os.path.join(self.data_dir, 'binary/videos', video_id) | |
out_fname = os.path.join(binary_dir, "trainval_dataset.npy") | |
os.makedirs(binary_dir, exist_ok=True) | |
ret = load_processed_data(processed_dir) | |
mel_name = os.path.join(processed_dir, 'aud_mel_f0.npy') | |
mel_f0_dict = np.load(mel_name, allow_pickle=True).tolist() | |
ret.update(mel_f0_dict) | |
np.save(out_fname, ret, allow_pickle=True) | |
if __name__ == '__main__': | |
from argparse import ArgumentParser | |
parser = ArgumentParser() | |
parser.add_argument('--video_id', type=str, default='May', help='') | |
args = parser.parse_args() | |
### Process Single Long Audio for NeRF dataset | |
video_id = args.video_id | |
face_model = ParametricFaceModel(bfm_folder='deep_3drecon/BFM', | |
camera_distance=10, focal=1015) | |
face_model.to("cpu") | |
face3d_helper = Face3DHelper() | |
binarizer = Binarizer() | |
binarizer.parse(video_id) | |
print(f"Binarization for {video_id} Done!") | |