Spaces:
Build error
Build error
import os | |
import numpy as np | |
from scipy.misc import face | |
import torch | |
from tqdm import trange | |
import pickle | |
from copy import deepcopy | |
from data_util.face3d_helper import Face3DHelper | |
from utils.commons.indexed_datasets import IndexedDataset, IndexedDatasetBuilder | |
def load_video_npy(fn): | |
assert fn.endswith("_coeff_fit_mp.npy") | |
ret_dict = np.load(fn,allow_pickle=True).item() | |
video_dict = { | |
'euler': ret_dict['euler'], # [T, 3] | |
'trans': ret_dict['trans'], # [T, 3] | |
'id': ret_dict['id'], # [T, 80] | |
'exp': ret_dict['exp'], # [T, 64] | |
} | |
return video_dict | |
def cal_lm3d_in_video_dict(video_dict, face3d_helper): | |
identity = video_dict['id'] | |
exp = video_dict['exp'] | |
idexp_lm3d = face3d_helper.reconstruct_idexp_lm3d(identity, exp).cpu().numpy() | |
video_dict['idexp_lm3d'] = idexp_lm3d | |
def load_audio_npy(fn): | |
assert fn.endswith(".npy") | |
ret_dict = np.load(fn,allow_pickle=True).item() | |
audio_dict = { | |
"mel": ret_dict['mel'], # [T, 80] | |
"f0": ret_dict['f0'], # [T,1] | |
} | |
return audio_dict | |
if __name__ == '__main__': | |
face3d_helper = Face3DHelper(use_gpu=False) | |
import glob,tqdm | |
prefixs = ['val', 'train'] | |
binarized_ds_path = "data/binary/th1kh" | |
os.makedirs(binarized_ds_path, exist_ok=True) | |
for prefix in prefixs: | |
databuilder = IndexedDatasetBuilder(os.path.join(binarized_ds_path, prefix), gzip=False, default_idx_size=1024*1024*1024*2) | |
raw_base_dir = '/mnt/bn/ailabrenyi/entries/yezhenhui/datasets/raw/TH1KH_512/video' | |
mp4_names = glob.glob(os.path.join(raw_base_dir, '*.mp4')) | |
mp4_names = mp4_names[:1000] | |
cnt = 0 | |
scnt = 0 | |
pbar = tqdm.tqdm(enumerate(mp4_names), total=len(mp4_names)) | |
for i, mp4_name in pbar: | |
cnt += 1 | |
if prefix == 'train': | |
if i % 100 == 0: | |
continue | |
else: | |
if i % 100 != 0: | |
continue | |
hubert_npy_name = mp4_name.replace("/video/", "/hubert/").replace(".mp4", "_hubert.npy") | |
audio_npy_name = mp4_name.replace("/video/", "/mel_f0/").replace(".mp4", "_mel_f0.npy") | |
video_npy_name = mp4_name.replace("/video/", "/coeff_fit_mp/").replace(".mp4", "_coeff_fit_mp.npy") | |
if not os.path.exists(audio_npy_name): | |
print(f"Skip item for audio npy not found.") | |
continue | |
if not os.path.exists(video_npy_name): | |
print(f"Skip item for video npy not found.") | |
continue | |
if (not os.path.exists(hubert_npy_name)): | |
print(f"Skip item for hubert_npy not found.") | |
continue | |
audio_dict = load_audio_npy(audio_npy_name) | |
hubert = np.load(hubert_npy_name) | |
video_dict = load_video_npy(video_npy_name) | |
com_img_dir = mp4_name.replace("/video/", "/com_imgs/").replace(".mp4", "") | |
num_com_imgs = len(glob.glob(os.path.join(com_img_dir, '*'))) | |
num_frames = len(video_dict['exp']) | |
if num_com_imgs != num_frames: | |
print(f"Skip item for length mismatch.") | |
continue | |
mel = audio_dict['mel'] | |
if mel.shape[0] < 32: # the video is shorter than 0.6s | |
print(f"Skip item for too short.") | |
continue | |
audio_dict.update(video_dict) | |
audio_dict['item_id'] = os.path.basename(mp4_name)[:-4] | |
audio_dict['hubert'] = hubert # [T_x, hid=1024] | |
audio_dict['img_dir'] = com_img_dir | |
databuilder.add_item(audio_dict) | |
scnt += 1 | |
pbar.set_postfix({'success': scnt, 'success rate': scnt / cnt}) | |
databuilder.finalize() | |
print(f"{prefix} set has {cnt} samples!") |