mrbear1024's picture
init project
8eb4303
import math
import time
import torch
from torch import nn, Tensor, einsum, IntTensor, FloatTensor, BoolTensor
from torch.nn import Module
import torch.nn.functional as F
import torchode
from torchdiffeq import odeint
from beartype import beartype
from beartype.typing import Tuple, Optional, List, Union
from einops.layers.torch import Rearrange
from einops import rearrange, repeat, reduce, pack, unpack
from modules.audio2motion.cfm.utils import *
from modules.audio2motion.cfm.icl_transformer import InContextTransformerAudio2Motion
# wrapper for the CNF
def is_probably_audio_from_shape(t):
return exists(t) and (t.ndim == 2 or (t.ndim == 3 and t.shape[1] == 1))
class ConditionalFlowMatcherWrapper(Module):
@beartype
def __init__(
self,
icl_transformer_model: InContextTransformerAudio2Motion = None,
sigma = 0.,
ode_atol = 1e-5,
ode_rtol = 1e-5,
# ode_step_size = 0.0625,
use_torchode = False,
torchdiffeq_ode_method = 'midpoint', # use midpoint for torchdiffeq, as in paper
torchode_method_klass = torchode.Tsit5, # use tsit5 for torchode, as torchode does not have midpoint (recommended by Bryan @b-chiang)
cond_drop_prob = 0.
):
super().__init__()
self.sigma = sigma
if icl_transformer_model is None:
icl_transformer_model = InContextTransformerAudio2Motion()
self.icl_transformer_model = icl_transformer_model
self.cond_drop_prob = cond_drop_prob
self.use_torchode = use_torchode
self.torchode_method_klass = torchode_method_klass
self.odeint_kwargs = dict(
atol = ode_atol,
rtol = ode_rtol,
method = torchdiffeq_ode_method,
# options = dict(step_size = ode_step_size)
)
@property
def device(self):
return next(self.parameters()).device
@torch.inference_mode()
def sample(
self,
*,
cond_audio = None, # [B, T (可以是2倍,会被interpolate到x1的length), C]
cond = None, # random
cond_mask = None,
steps = 3, # flow steps, 3和10都需要0.56s
cond_scale = 1.,
ret=None,
self_attn_mask = None,
temperature=1.0,
):
if ret is None:
ret = {}
cond_target_length = cond_audio.shape[1] // 2
if exists(cond):
cond = curtail_or_pad(cond, cond_target_length)
else:
cond = torch.zeros((cond_audio.shape[0], cond_target_length, self.dim_cond_emb), device = self.device)
shape = cond.shape
batch = shape[0]
# neural ode
self.icl_transformer_model.eval()
def fn(t, x, *, packed_shape = None):
if exists(packed_shape):
x = unpack_one(x, packed_shape, 'b *')
out = self.icl_transformer_model.forward_with_cond_scale(
x, # rand
times = t, # timestep in DM
cond_audio = cond_audio,
cond = cond, # rand?
cond_scale = cond_scale,
cond_mask = cond_mask,
self_attn_mask = self_attn_mask,
ret=ret,
)
if exists(packed_shape):
out = rearrange(out, 'b ... -> b (...)')
return out
y0 = torch.randn_like(cond) * float(temperature)
t = torch.linspace(0, 1, steps, device = self.device)
timestamp_before_sampling = time.time()
if not self.use_torchode:
print(f'sampling based on torchdiffeq with flow total_steps={steps}')
trajectory = odeint(fn, y0, t, **self.odeint_kwargs) # 从y0位置出发,fn根据当前位置提供velocity,沿着t进行积分。
sampled = trajectory[-1]
else:
print(f'sampling based on torchode with flow total_steps={steps}')
t = repeat(t, 'n -> b n', b = batch)
y0, packed_shape = pack_one(y0, 'b *')
fn = partial(fn, packed_shape = packed_shape)
term = to.ODETerm(fn)
step_method = self.torchode_method_klass(term = term)
step_size_controller = to.IntegralController(
atol = self.odeint_kwargs['atol'],
rtol = self.odeint_kwargs['rtol'],
term = term
)
solver = to.AutoDiffAdjoint(step_method, step_size_controller)
jit_solver = torch.compile(solver)
init_value = to.InitialValueProblem(y0 = y0, t_eval = t)
sol = jit_solver.solve(init_value)
sampled = sol.ys[:, -1]
sampled = unpack_one(sampled, packed_shape, 'b *')
print(f"Flow matching sampling process elapsed in {time.time()-timestamp_before_sampling:.4f} second")
return sampled
def forward(
self,
x1, # gt sample, landmark, [B, T, C]
*,
mask = None, # mask of frames in batch
cond_audio = None, # [B, T (可以是2倍,会被interpolate到x1的length), C]
cond = None, # reference landmark
cond_mask = None, # mask of reference landmark, reference are marked as False, and frames to be predicted are True
ret = None,
):
"""
training step of Continous Normalizing Flow
following eq (5) (6) in https://arxiv.org/pdf/2306.15687.pdf
"""
if ret is None:
ret = {}
batch, seq_len, dtype, sigma_ = *x1.shape[:2], x1.dtype, self.sigma
# main conditional flow logic is below
# x0 is gaussian noise
x0 = torch.randn_like(x1)
# batch-wise random times with 0~1
times = torch.rand((batch,), dtype = dtype, device = self.device)
t = rearrange(times, 'b -> b 1 1')
# sample xt within x0=>xt=>x1 (Sec 3.1 in the paper)
# The associated conditional vector field is ut(x | x1) = (x1 − (1 − σmin)*x) / (1 − (1 − σmin)*t),
# and the conditional flow is φt(x | x1) = (1 − (1 − σmin)*t)*x + t * x1.
current_position_in_flows = (1 - (1 - sigma_) * t) * x0 + t * x1 # input of the transformer, noised sample, conditional flow, φt(x | x1) in FlowMatching
optimal_path = x1 - (1 - sigma_) * x0 # target of the transformer, vector field , u_t(x|x1) in FlowMatching
# predict
self.icl_transformer_model.train()
# the ouput of transformer is learnable vector field v_t(x;theta) in FlowMatching
loss = self.icl_transformer_model(
current_position_in_flows, # noised motion sample
cond = cond,
cond_mask = cond_mask,
times = times,
target = optimal_path, #
self_attn_mask = mask,
cond_audio = cond_audio,
cond_drop_prob = self.cond_drop_prob,
ret=ret,
)
pred_x1_minus_x0 = ret['pred'] # predicted path
pred_x1 = pred_x1_minus_x0 + (1 - sigma_) * x0
ret['pred'] = pred_x1
return loss
if __name__ == '__main__':
icl_transformer = InContextTransformerAudio2Motion()
model = ConditionalFlowMatcherWrapper(icl_transformer)
x = torch.randn([2, 125, 64])
cond = torch.randn([2, 125, 64])
cond_audio = torch.randn([2, 250, 1024])
y = model(x, cond=cond, cond_audio=cond_audio)
y = model.sample(cond=cond, cond_audio=cond_audio)
print(y.shape)