Spaces:
Build error
Build error
import math | |
import torch | |
from typing import Optional, Tuple | |
from torch import nn | |
from utils.nn.seq_utils import get_incremental_state, set_incremental_state, softmax, make_positions | |
import torch.nn.functional as F | |
# from flash_attn import flash_attn_qkvpacked_func, flash_attn_func | |
DEFAULT_MAX_SOURCE_POSITIONS = 20000 | |
DEFAULT_MAX_TARGET_POSITIONS = 20000 | |
class RotaryEmbeddings(nn.Module): | |
cos: torch.Tensor | |
sin: torch.Tensor | |
theta: torch.Tensor | |
def __init__( | |
self, | |
width: int, | |
*, | |
seq_len: int = 4000, | |
base: int = 10000, | |
device: Optional[torch.device] = None, | |
): | |
"""Rotary embeddings (Su et al., 2021) layer. The rotary embedding | |
will be precomputed for up to 'seq _len' positions. The embedding | |
will be recomputed when a longer sequence is found in the input. | |
:param width: | |
Rotary embedding dimensionality, must be even. | |
:param seq_len: | |
Number of positons to initially precompute. | |
:param base: | |
The base used for Θ_i, determines the cycle length of the | |
embeddings. | |
:param device: Device on which the module is to be initialized. | |
""" | |
super().__init__() | |
if width % 2: | |
raise ValueError(f"Width of rotary embeddings must be even, was: {width}") | |
# Ignore allocations on the meta device as we don't persist our buffer, | |
# i.e., we don't expect the backing tensor to be replaced with pretrained weights. | |
if device is not None and device.type == "meta": | |
device = None | |
# Θ_i = 10000^(-2(i-1)/d) | |
theta = torch.pow( | |
base, -torch.arange(0, width, 2, dtype=torch.float, device=device) / width | |
) | |
self.register_buffer("theta", theta, persistent=False) | |
self._create_rotary_embed(width=width, length=seq_len) | |
def _create_rotary_embed(self, *, width: int, length: int): | |
# mΘ | |
position = torch.arange(length, device=self.theta.device).unsqueeze(1) | |
m_theta = position * self.theta.unsqueeze(0) | |
# We apply both sin and cos twice (see Eq 15, 34), but the ordering | |
# is changed for compatibility with most common implementations. | |
m_theta = torch.cat([m_theta, m_theta], dim=-1) | |
re_cos = m_theta.cos().view([length, width]).half() | |
re_sin = m_theta.sin().view([length, width]).half() | |
self.register_buffer("cos", re_cos, persistent=False) | |
self.register_buffer("sin", re_sin, persistent=False) | |
def _rotate(self, input: torch.Tensor): | |
"""Rotate the input tensor by half of its innermost width. | |
input (Tensor): array to rotate. | |
RETURNS (Tensor): rotated array. | |
Shapes: | |
input - (..., width) | |
output - (..., width) | |
""" | |
half_idx = input.shape[-1] // 2 | |
input_1 = -input[..., half_idx:] | |
input_2 = input[..., :half_idx] | |
return torch.cat([input_1, input_2], dim=-1) | |
def forward(self, input: torch.Tensor, *, positions: Optional[torch.Tensor] = None): | |
""" | |
Apply rotary embeddings to an array. | |
:param input: Array to apply the rotary embeddings to. | |
:param positions: positions of the inputs. If no positions are | |
provided, they are assumed to be [0, seq_len). | |
:return: Array with the rotary embeddings applied. | |
Shapes: | |
input - (batch_size, num_heads, seq_len, width_per_head) | |
positions - (batch_size, seq_len) | |
output - (batch_size, num_heads, seq_len, width_per_head) | |
""" | |
batch_size, _, seq_len, width = input.shape | |
if positions is None: | |
# Fastpath: positions from [0..seq_len), avoid indexing. | |
if self.cos.size(-2) < seq_len: | |
self._create_rotary_embed(width=width, length=seq_len) | |
rot_cos = self.cos[:seq_len, :].view(1, 1, seq_len, width) | |
rot_sin = self.sin[:seq_len, :].view(1, 1, seq_len, width) | |
else: | |
max_len = int(positions.max()) + 1 | |
if self.cos.size(-2) < max_len: | |
self._create_rotary_embed(width=width, length=max_len) | |
# Flatten positions to index cos/sin arrays, then unflatten. | |
# | |
# Example shapes: | |
# | |
# positions_flat - (batch_size * seq_len) | |
# self.cos - (max_len, width) | |
# rot_cos - (batch_size, seq_len, width) | |
positions_flat = positions.view(-1) | |
rot_cos = self.cos[positions_flat].view(batch_size, 1, seq_len, width) | |
rot_sin = self.sin[positions_flat].view(batch_size, 1, seq_len, width) | |
# Eq 34 with ordering changed for compatibility. | |
return rot_cos * input + rot_sin * self._rotate(input) | |
class LayerNorm(nn.Module): | |
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """ | |
def __init__(self, ndim, bias=False): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(ndim)) | |
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None | |
def forward(self, input): | |
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, embed_dim, num_heads, dropout=0.): | |
super().__init__() | |
# Typically, bias = True in Linears and LayerNorms, like GPT-2. But we set bias = False: a bit better and faster (following https://github.com/karpathy/nanoGPT) | |
assert embed_dim % num_heads == 0 | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" | |
self.scaling = self.head_dim ** -0.5 | |
# key, query, value projections for all heads, but in a batch | |
self.c_attn = nn.Linear(embed_dim, 3 * embed_dim, bias=False) | |
# output projection | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=False) | |
# rotary embeddings | |
self.rotary_embeds = RotaryEmbeddings(width=embed_dim // num_heads) | |
# flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0 | |
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') | |
if not self.flash: | |
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0") | |
def forward( | |
self, | |
query, key, value, | |
spk_pos_ids_flat=None, | |
incremental_state=None, | |
need_weights=True, | |
static_kv=False, | |
attn_mask=None, | |
need_head_weights=False, | |
enc_dec_attn_constraint_mask=None, | |
): | |
"""Input shape: Time x Batch x Channel | |
Args: | |
need_weights (bool, optional): return the attention weights, | |
averaged over heads (default: False). | |
attn_mask (ByteTensor, optional): typically used to | |
implement causal attention, where the mask prevents the | |
attention from looking forward in time (default: None). | |
need_head_weights (bool, optional): return the attention | |
weights for each head. Implies *need_weights*. Default: | |
return the average attention weights over all heads. | |
""" | |
if need_head_weights: | |
need_weights = True | |
tgt_len, bsz, embed_dim = query.size() | |
assert embed_dim == self.embed_dim | |
assert list(query.size()) == [tgt_len, bsz, embed_dim] | |
if incremental_state is not None: | |
saved_state = self._get_input_buffer(incremental_state) | |
else: | |
saved_state = None | |
# calculate query, key, values for all heads in batch and move head forward to be the batch dim | |
q, k, v = self.c_attn(query).split(self.embed_dim, dim=2) | |
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) | |
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) | |
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) | |
# Apply rot embedding and store incremental_state | |
q = self.rotary_embeds(q[None, :], positions=spk_pos_ids_flat)[0] | |
if saved_state is not None: | |
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim) | |
if 'prev_key' in saved_state: | |
prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim) | |
if static_kv: | |
k = prev_key | |
else: | |
k = torch.cat((prev_key, k), dim=1) | |
if 'prev_value' in saved_state: | |
prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim) | |
if static_kv: | |
v = prev_value | |
else: | |
v = torch.cat((prev_value, v), dim=1) | |
saved_state['prev_key'], saved_state['prev_value'] = k.view(bsz, self.num_heads, -1, self.head_dim), v.view( | |
bsz, self.num_heads, -1, self.head_dim) | |
self._set_input_buffer(incremental_state, saved_state) | |
if incremental_state is not None: | |
key_pos = torch.arange(k.shape[-2], device=q.device).unsqueeze(0) | |
else: | |
key_pos = spk_pos_ids_flat | |
k = self.rotary_embeds(k[None, :], positions=key_pos)[0] | |
src_len = k.size(1) | |
# Start Attention | |
if self.flash: | |
# efficient attention using Flash Attention CUDA kernels | |
attn = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v, attn_mask=attn_mask, dropout_p=0, | |
is_causal=False) | |
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] | |
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) | |
# Flash Attn 2 | |
# from flash_attn import flash_attn_func | |
# q, k, v = q.transpose(0, 1)[None, :], k.transpose(0, 1)[None, :], v.transpose(0, 1)[None, :] | |
# attn = flash_attn_func(q, k, v, dropout_p=0.0, causal=False)[0].contiguous().view(tgt_len, bsz, embed_dim) | |
attn = self.out_proj(attn) | |
attn_logits = None | |
else: | |
attn_weights = torch.bmm(q, k.transpose(1, 2)) | |
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] | |
if attn_mask is not None: | |
if len(attn_mask.shape) == 2: | |
attn_mask = attn_mask.unsqueeze(0) | |
elif len(attn_mask.shape) == 3: | |
attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape( | |
bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights + attn_mask | |
attn_logits = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights_float = softmax(attn_weights, dim=-1) | |
attn_weights = attn_weights_float.type_as(attn_weights) | |
attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training) | |
attn = torch.bmm(attn_probs, v) | |
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] | |
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) | |
attn = self.out_proj(attn) | |
if need_weights: | |
attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0) | |
if not need_head_weights: | |
# average attention weights over heads | |
attn_weights = attn_weights.mean(dim=0) | |
else: | |
attn_weights = None | |
return attn, (attn_weights, attn_logits) | |
def _get_input_buffer(self, incremental_state): | |
return get_incremental_state( | |
self, | |
incremental_state, | |
'attn_state', | |
) or {} | |
def _set_input_buffer(self, incremental_state, buffer): | |
set_incremental_state( | |
self, | |
incremental_state, | |
'attn_state', | |
buffer, | |
) | |
def clear_buffer(self, incremental_state=None): | |
if incremental_state is not None: | |
saved_state = self._get_input_buffer(incremental_state) | |
if 'prev_key' in saved_state: | |
del saved_state['prev_key'] | |
if 'prev_value' in saved_state: | |
del saved_state['prev_value'] | |
self._set_input_buffer(incremental_state, saved_state) | |
class TransformerFFNLayer(nn.Module): | |
def __init__(self, hidden_size, filter_size, padding="SAME", kernel_size=1, dropout=0., act='gelu'): | |
super().__init__() | |
self.kernel_size = kernel_size | |
self.dropout = dropout | |
self.act = act | |
if padding == 'SAME': | |
self.ffn_1 = nn.Conv1d(hidden_size, filter_size, kernel_size, padding=kernel_size // 2, bias=False) | |
elif padding == 'LEFT': | |
self.ffn_1 = nn.Sequential( | |
nn.ConstantPad1d((kernel_size - 1, 0), 0.0), | |
nn.Conv1d(hidden_size, filter_size, kernel_size, bias=False) | |
) | |
self.ffn_2 = nn.Linear(filter_size, hidden_size, bias=False) | |
def forward(self, x, incremental_state=None): | |
# x: T x B x C | |
if incremental_state is not None: | |
T_inp = x.shape[0] | |
saved_state = self._get_input_buffer(incremental_state) | |
if 'prev_input' in saved_state: | |
prev_input = saved_state['prev_input'] | |
x = torch.cat((prev_input, x), dim=0) | |
x = x[-self.kernel_size:] | |
saved_state['prev_input'] = x | |
self._set_input_buffer(incremental_state, saved_state) | |
x = self.ffn_1(x.permute(1, 2, 0)).permute(2, 0, 1) | |
x = x * self.kernel_size ** -0.5 | |
if incremental_state is not None: | |
x = x[-T_inp:] | |
# if self.act == 'gelu': | |
# x = F.gelu(x) | |
# if self.act == 'relu': | |
# x = F.relu(x) | |
x = F.silu(x) | |
x = F.dropout(x, self.dropout, training=self.training) | |
x = self.ffn_2(x) | |
return x | |
def _get_input_buffer(self, incremental_state): | |
return get_incremental_state( | |
self, | |
incremental_state, | |
'f', | |
) or {} | |
def _set_input_buffer(self, incremental_state, buffer): | |
set_incremental_state( | |
self, | |
incremental_state, | |
'f', | |
buffer, | |
) | |
def clear_buffer(self, incremental_state): | |
if incremental_state is not None: | |
saved_state = self._get_input_buffer(incremental_state) | |
if 'prev_input' in saved_state: | |
del saved_state['prev_input'] | |
self._set_input_buffer(incremental_state, saved_state) | |
class GPTBlock(nn.Module): | |
def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, | |
kernel_size=9, ffn_hidden_size=1024, act='gelu', post_ln=False, norm_cls=LayerNorm): | |
super().__init__() | |
self.c = c | |
self.dropout = dropout | |
self.layer_norm1 = norm_cls(c) | |
self.self_attn = CausalSelfAttention( | |
c, num_heads, dropout=attention_dropout | |
) | |
self.layer_norm2 = norm_cls(c) | |
self.ffn = TransformerFFNLayer( | |
c, ffn_hidden_size, padding='LEFT', kernel_size=kernel_size, dropout=relu_dropout, act=act) | |
self.post_ln = post_ln | |
def forward( | |
self, | |
x, | |
encoder_out=None, | |
encoder_padding_mask=None, | |
incremental_state=None, | |
self_attn_mask=None, | |
attn_out=None, | |
spk_pos_ids_flat=None, | |
**kwargs, | |
): | |
layer_norm_training = kwargs.get('layer_norm_training', None) | |
if layer_norm_training is not None: | |
self.layer_norm1.training = layer_norm_training | |
self.layer_norm2.training = layer_norm_training | |
residual = x | |
if not self.post_ln: | |
x = self.layer_norm1(x) | |
x, _ = self.self_attn( | |
query=x, | |
key=x, | |
value=x, | |
incremental_state=incremental_state, | |
attn_mask=self_attn_mask, | |
spk_pos_ids_flat=spk_pos_ids_flat, | |
need_weights=False | |
) | |
x = F.dropout(x, self.dropout, training=self.training) | |
x = residual + x | |
if self.post_ln: | |
x = self.layer_norm1(x) | |
attn_logits = None | |
residual = x | |
if not self.post_ln: | |
x = self.layer_norm2(x) | |
x = self.ffn(x, incremental_state=incremental_state) | |
x = F.dropout(x, self.dropout, training=self.training) | |
x = residual + x | |
if self.post_ln: | |
x = self.layer_norm2(x) | |
return x, attn_logits | |
def clear_buffer(self, input, encoder_out=None, encoder_padding_mask=None, incremental_state=None): | |
self.encoder_attn.clear_buffer(incremental_state) | |
self.ffn.clear_buffer(incremental_state) | |
def set_buffer(self, name, tensor, incremental_state): | |
return set_incremental_state(self, incremental_state, name, tensor) | |
class GPTLayer(nn.Module): | |
def __init__(self, hidden_size, dropout, kernel_size=9, num_heads=8, ffn_hidden_size=1024, post_ln=False, | |
lm_num_layers=10, norm_cls=LayerNorm): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.dropout = dropout | |
self.num_heads = num_heads | |
self.op = GPTBlock( | |
hidden_size, num_heads, dropout=dropout, | |
attention_dropout=0.0, relu_dropout=dropout, | |
kernel_size=kernel_size, ffn_hidden_size=ffn_hidden_size, | |
post_ln=post_ln, norm_cls=norm_cls) | |
# init all weights | |
self.apply(self._init_weights) | |
# apply special scaled init to the residual projections, per GPT-2 paper | |
for pn, p in self.named_parameters(): | |
if pn.endswith('ffn_2.weight') or pn.endswith('out_proj.weight'): | |
torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * lm_num_layers)) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def forward(self, x, **kwargs): | |
return self.op(x, **kwargs) | |
def clear_buffer(self, *args): | |
return self.op.clear_buffer(*args) | |
def set_buffer(self, *args): | |
return self.op.set_buffer(*args) | |