Spaces:
Build error
Build error
# --------------------------------------------------------------- | |
# Copyright (c) 2021, NVIDIA Corporation. All rights reserved. | |
# | |
# This work is licensed under the NVIDIA Source Code License | |
# --------------------------------------------------------------- | |
import torch | |
import torch.distributed as dist | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from functools import partial | |
import warnings | |
from einops import rearrange | |
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | |
from timm.models.registry import register_model | |
from timm.models.vision_transformer import _cfg | |
import math | |
from mmcv.cnn import ConvModule | |
from modules.commons.loralib.layers import MergedLoRALinear, LoRALinear, LoRAConv2d, LoRAConv3d | |
from utils.commons.hparams import hparams | |
def resize(input, | |
size=None, | |
scale_factor=None, | |
mode='nearest', | |
align_corners=None, | |
warning=True): | |
if warning: | |
if size is not None and align_corners: | |
input_h, input_w = tuple(int(x) for x in input.shape[2:]) | |
output_h, output_w = tuple(int(x) for x in size) | |
if output_h > input_h or output_w > output_h: | |
if ((output_h > 1 and output_w > 1 and input_h > 1 | |
and input_w > 1) and (output_h - 1) % (input_h - 1) | |
and (output_w - 1) % (input_w - 1)): | |
warnings.warn( | |
f'When align_corners={align_corners}, ' | |
'the output would more aligned if ' | |
f'input size {(input_h, input_w)} is `x+1` and ' | |
f'out size {(output_h, output_w)} is `nx+1`') | |
if isinstance(size, torch.Size): | |
size = tuple(int(x) for x in size) | |
return F.interpolate(input, size, scale_factor, mode, align_corners) | |
class HeadMLP(nn.Module): | |
""" | |
Linear Embedding | |
""" | |
def __init__(self, input_dim=2048, embed_dim=768): | |
super().__init__() | |
self.proj = nn.Linear(input_dim, embed_dim) | |
def forward(self, x): | |
x = x.flatten(2).transpose(1, 2) | |
x = self.proj(x) | |
return x | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.dwconv = DWConv(hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, x, H, W): | |
x = self.fc1(x) | |
x = self.dwconv(x, H, W) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1): | |
super().__init__() | |
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." | |
self.dim = dim | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.q = nn.Linear(dim, dim, bias=qkv_bias) | |
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.sr_ratio = sr_ratio | |
if sr_ratio > 1: | |
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) | |
self.norm = nn.LayerNorm(dim) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, x, H, W): | |
B, N, C = x.shape | |
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
if self.sr_ratio > 1: | |
x_ = x.permute(0, 2, 1).reshape(B, C, H, W) | |
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1) | |
x_ = self.norm(x_) | |
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
else: | |
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
k, v = kv[0], kv[1] | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, x, H, W): | |
x = x + self.drop_path(self.attn(self.norm1(x), H, W)) | |
x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) | |
return x | |
class OverlapPatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] | |
self.num_patches = self.H * self.W | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride, | |
padding=(patch_size[0] // 2, patch_size[1] // 2)) | |
self.norm = nn.LayerNorm(embed_dim) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, x): | |
x = self.proj(x) | |
_, _, H, W = x.shape | |
x = x.flatten(2).transpose(1, 2) | |
x = self.norm(x) | |
return x, H, W | |
class MixVisionTransformer(nn.Module): | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512], | |
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., | |
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, | |
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]): | |
super().__init__() | |
self.num_classes = num_classes | |
self.depths = depths | |
# patch_embed | |
self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_chans=in_chans, | |
embed_dim=embed_dims[0]) | |
self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0], | |
embed_dim=embed_dims[1]) | |
self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1], | |
embed_dim=embed_dims[2]) | |
self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2], | |
embed_dim=embed_dims[3]) | |
# transformer encoder | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
cur = 0 | |
self.block1 = nn.ModuleList([Block( | |
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, | |
sr_ratio=sr_ratios[0]) | |
for i in range(depths[0])]) | |
self.norm1 = norm_layer(embed_dims[0]) | |
cur += depths[0] | |
self.block2 = nn.ModuleList([Block( | |
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, | |
sr_ratio=sr_ratios[1]) | |
for i in range(depths[1])]) | |
self.norm2 = norm_layer(embed_dims[1]) | |
cur += depths[1] | |
self.block3 = nn.ModuleList([Block( | |
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, | |
sr_ratio=sr_ratios[2]) | |
for i in range(depths[2])]) | |
self.norm3 = norm_layer(embed_dims[2]) | |
cur += depths[2] | |
self.block4 = nn.ModuleList([Block( | |
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, | |
sr_ratio=sr_ratios[3]) | |
for i in range(depths[3])]) | |
self.norm4 = norm_layer(embed_dims[3]) | |
# classification head | |
# self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity() | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def reset_drop_path(self, drop_path_rate): | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))] | |
cur = 0 | |
for i in range(self.depths[0]): | |
self.block1[i].drop_path.drop_prob = dpr[cur + i] | |
cur += self.depths[0] | |
for i in range(self.depths[1]): | |
self.block2[i].drop_path.drop_prob = dpr[cur + i] | |
cur += self.depths[1] | |
for i in range(self.depths[2]): | |
self.block3[i].drop_path.drop_prob = dpr[cur + i] | |
cur += self.depths[2] | |
for i in range(self.depths[3]): | |
self.block4[i].drop_path.drop_prob = dpr[cur + i] | |
def freeze_patch_emb(self): | |
self.patch_embed1.requires_grad = False | |
def no_weight_decay(self): | |
return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=''): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x): | |
B = x.shape[0] | |
outs = [] | |
# stage 1 | |
x, H, W = self.patch_embed1(x) | |
for i, blk in enumerate(self.block1): | |
x = blk(x, H, W) | |
x = self.norm1(x) | |
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
outs.append(x) | |
# stage 2 | |
x, H, W = self.patch_embed2(x) | |
for i, blk in enumerate(self.block2): | |
x = blk(x, H, W) | |
x = self.norm2(x) | |
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
outs.append(x) | |
# stage 3 | |
x, H, W = self.patch_embed3(x) | |
for i, blk in enumerate(self.block3): | |
x = blk(x, H, W) | |
x = self.norm3(x) | |
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
outs.append(x) | |
# stage 4 | |
x, H, W = self.patch_embed4(x) | |
for i, blk in enumerate(self.block4): | |
x = blk(x, H, W) | |
x = self.norm4(x) | |
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
outs.append(x) | |
return outs | |
def forward(self, x): | |
x = self.forward_features(x) | |
# x = self.head(x) | |
return x | |
class DWConv(nn.Module): | |
def __init__(self, dim=768): | |
super(DWConv, self).__init__() | |
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) | |
def forward(self, x, H, W): | |
B, N, C = x.shape | |
x = x.transpose(1, 2).view(B, C, H, W) | |
x = self.dwconv(x) | |
x = x.flatten(2).transpose(1, 2) | |
return x | |
class mit_b0(MixVisionTransformer): # 3.319M | |
def __init__(self, **kwargs): | |
super(mit_b0, self).__init__( | |
patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, drop_path_rate=0.1) | |
self.load_state_dict(torch.load('checkpoints/pretrained_ckpts/mit_b0.pth'), strict=False) | |
class mit_b1(MixVisionTransformer): # 13.151M | |
def __init__(self, **kwargs): | |
super(mit_b1, self).__init__( | |
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, drop_path_rate=0.1) | |
self.load_state_dict(torch.load('checkpoints/pretrained_ckpts/mit_b1.pth'), strict=False) | |
class mit_b2(MixVisionTransformer): # 24.196M | |
def __init__(self, **kwargs): | |
super(mit_b2, self).__init__( | |
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, drop_path_rate=0.1) | |
self.load_state_dict(torch.load('checkpoints/pretrained_ckpts/mit_b2.pth'), strict=False) | |
class mit_b3(MixVisionTransformer): # 44.072M | |
def __init__(self, **kwargs): | |
super(mit_b3, self).__init__( | |
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, drop_path_rate=0.1) | |
self.load_state_dict(torch.load('checkpoints/pretrained_ckpts/mit_b3.pth'), strict=False) | |
class mit_b4(MixVisionTransformer): # 60.843M | |
def __init__(self, **kwargs): | |
super(mit_b4, self).__init__( | |
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, drop_path_rate=0.1) | |
self.load_state_dict(torch.load('checkpoints/pretrained_ckpts/mit_b4.pth'), strict=False) | |
class mit_b5(MixVisionTransformer): # 81.443M | |
def __init__(self, **kwargs): | |
super(mit_b5, self).__init__( | |
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, drop_path_rate=0.1) | |
self.load_state_dict(torch.load('checkpoints/pretrained_ckpts/mit_b5.pth'), strict=False) | |
class SegFormerHead(nn.Module): | |
""" | |
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers | |
""" | |
def __init__(self, segformer_scale='b3'): | |
super().__init__() | |
self.segformer_scale = segformer_scale | |
self.in_channels = [64, 128, 320, 512] if self.segformer_scale != 'b0' else [32, 64, 160, 256] | |
self.feature_strides = [4, 8, 16, 32] | |
self.in_index = [0, 1, 2, 3] | |
self.input_transform='multiple_select' | |
self.dropout = nn.Dropout2d(0.1) | |
c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels | |
embedding_dim = self.embedding_dim = 256 | |
self.linear_c4 = HeadMLP(input_dim=c4_in_channels, embed_dim=embedding_dim) | |
self.linear_c3 = HeadMLP(input_dim=c3_in_channels, embed_dim=embedding_dim) | |
self.linear_c2 = HeadMLP(input_dim=c2_in_channels, embed_dim=embedding_dim) | |
self.linear_c1 = HeadMLP(input_dim=c1_in_channels, embed_dim=embedding_dim) | |
if dist.is_initialized(): | |
self.linear_fuse = ConvModule( | |
in_channels=embedding_dim*4, | |
out_channels=embedding_dim, | |
kernel_size=1, | |
norm_cfg=dict(type='SyncBN', requires_grad=True) | |
) | |
else: | |
self.linear_fuse = ConvModule( | |
in_channels=embedding_dim*4, | |
out_channels=embedding_dim, | |
kernel_size=1, | |
norm_cfg=dict(type='BN', requires_grad=True) | |
) | |
def _transform_inputs(self, inputs): | |
"""Transform inputs for decoder. | |
Args: | |
inputs (list[Tensor]): List of multi-level img features. | |
Returns: | |
Tensor: The transformed inputs | |
""" | |
if self.input_transform == 'multiple_select': | |
inputs = [inputs[i] for i in self.in_index] | |
else: | |
inputs = inputs[self.in_index] | |
return inputs | |
def forward(self, inputs): | |
x = self._transform_inputs(inputs) # len=4, 1/4,1/8,1/16,1/32 | |
c1, c2, c3, c4 = x | |
############## MLP decoder on C1-C4 ########### | |
n, _, h, w = c4.shape | |
_c4 = self.linear_c4(c4).permute(0,2,1).reshape(n, -1, c4.shape[2], c4.shape[3]) | |
_c4 = resize(_c4, size=c1.size()[2:],mode='bilinear',align_corners=False) | |
_c3 = self.linear_c3(c3).permute(0,2,1).reshape(n, -1, c3.shape[2], c3.shape[3]) | |
_c3 = resize(_c3, size=c1.size()[2:],mode='bilinear',align_corners=False) | |
_c2 = self.linear_c2(c2).permute(0,2,1).reshape(n, -1, c2.shape[2], c2.shape[3]) | |
_c2 = resize(_c2, size=c1.size()[2:],mode='bilinear',align_corners=False) | |
_c1 = self.linear_c1(c1).permute(0,2,1).reshape(n, -1, c1.shape[2], c1.shape[3]) | |
_c = self.linear_fuse(torch.cat([_c4, _c3, _c2, _c1], dim=1)) | |
x = self.dropout(_c) | |
return x | |
# from modules.hidenerf.models.networks_stylegan2 import Conv2dLayer | |
from modules.eg3ds.models.networks_stylegan2 import Conv2dLayer | |
class conv(nn.Module): | |
def __init__(self, num_in_layers, num_out_layers, kernel_size, up=1, down=1, lora_args=None): | |
super(conv, self).__init__() | |
self.conv = Conv2dLayer(num_in_layers, num_out_layers, kernel_size, activation='elu', up=up, down=down, lora_args=lora_args) | |
self.bn = nn.InstanceNorm2d( | |
num_out_layers, track_running_stats=False, affine=True | |
) | |
def forward(self, x): | |
return self.bn(self.conv(x)) | |
class SegFormerImg2PlaneBackbone(nn.Module): | |
def __init__(self, mode='b3'): | |
super().__init__() | |
mode2cls = { | |
'b0': mit_b0, | |
'b1': mit_b1, | |
'b2': mit_b2, | |
'b3': mit_b3, | |
'b4': mit_b4, | |
'b5': mit_b5, | |
} | |
self.mode = mode | |
self.mix_vit = mode2cls[mode]() | |
self.fuse_head = SegFormerHead(mode) | |
self.to_plane_cnn = nn.Sequential(*[ | |
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(negative_slope=0.01, inplace=True), | |
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(negative_slope=0.01, inplace=True), | |
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(negative_slope=0.01, inplace=True), | |
nn.UpsamplingBilinear2d(scale_factor=2.), | |
nn.Conv2d(in_channels=256, out_channels=96, kernel_size=3, stride=1, padding=1), | |
]) | |
def forward(self, x): | |
""" | |
x: [B, 3, H=512, W=512] | |
return: | |
plane: [B, 96, H=256, W=256] | |
""" | |
feats = self.mix_vit(x) | |
fused_feat = self.fuse_head(feats) | |
planes = self.to_plane_cnn(fused_feat) | |
planes = planes.view(len(planes), 3, -1, planes.shape[-2], planes.shape[-1]) | |
planes_xy = planes[:,0] | |
planes_xy = torch.flip(planes_xy, [2]) | |
planes_xz = planes[:,1] | |
planes_xz = torch.flip(planes_xz, [2]) | |
planes_zy = planes[:,2] | |
planes_zy = torch.flip(planes_zy, [2, 3]) | |
planes = torch.stack([planes_xy, planes_xz, planes_zy], dim=1) # [N, 3, C, H, W] | |
return planes | |
class TemporalAttNet(nn.Module): | |
""" | |
Used to smooth the secc_plane with a window input | |
""" | |
def __init__(self, in_dim=96, seq_len=5): | |
super().__init__() | |
self.seq_len = seq_len | |
self.conv2d_layers = nn.Sequential(*[ | |
# [B, C=96, T, H=224, W=224] ==> [B, 64, T, 112, 112] | |
nn.Conv3d(in_dim, 64, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1)), | |
nn.LeakyReLU(0.02, True), | |
nn.Conv3d(64, 64, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1)), | |
nn.LeakyReLU(0.02, True), | |
nn.AvgPool3d(kernel_size=(1, 2, 2), stride=(1,2,2), count_include_pad=False), | |
# [B, C=64, T, H=112, W=112] ==> [B, 32, T, 56, 56] | |
nn.Conv3d(64, 32, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1)), | |
nn.LeakyReLU(0.02, True), | |
nn.Conv3d(32, 32, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1)), | |
nn.LeakyReLU(0.02, True), | |
nn.AvgPool3d(kernel_size=(1, 2, 2), stride=(1,2,2), count_include_pad=False), | |
# [B, C=32, T, H=56, W=56] ==> [B, 16, T, 28, 28] | |
nn.Conv3d(32, 16, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1)), | |
nn.LeakyReLU(0.02, True), | |
nn.Conv3d(16, 16, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1)), | |
nn.LeakyReLU(0.02, True), | |
nn.AvgPool3d(kernel_size=(1, 2, 2), stride=(1,2,2), count_include_pad=False), | |
]) | |
self.conv3d_layers = nn.Sequential(*[ | |
# [B, C=16, T, H=28, W=28] ==> [B, 8, T, 14, 14] | |
nn.Conv3d(16, 8, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(0.02, True), | |
nn.AvgPool3d(kernel_size=(1, 2, 2), stride=(1,2,2), count_include_pad=False), | |
# [B, C=8, T, H=14, W=14] ==> [B, 8, T, 7, 7] | |
nn.Conv3d(8, 8, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(0.02, True), | |
nn.AvgPool3d(kernel_size=(1, 2, 2), stride=(1,2,2), count_include_pad=False), | |
# [B, C=8, T, H=7, W=7] ==> [B, 4, T, 1, 1] | |
nn.Conv3d(8, 4, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(0.02, True), | |
nn.Conv3d(4, 2, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(0.02, True), | |
nn.Conv3d(2, 1, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(0.02, True), | |
nn.AvgPool3d(kernel_size=(1, 7, 7), stride=1, count_include_pad=False), | |
]) | |
self.to_attention_weights = nn.Sequential( | |
nn.Linear(in_features=self.seq_len, out_features=self.seq_len, bias=True), | |
nn.Softmax(dim=1) | |
) | |
def forward(self, x): | |
""" | |
x: [B, C, T, H, W] | |
y: [B, T] attention weights | |
out: [B, C, H, W] | |
""" | |
b,c,t,h,w = x.shape | |
y = F.interpolate(x, size=(t, 224, 224), mode='trilinear') | |
y = self.conv2d_layers(y) # [B, 16, 5, 28, 28] | |
y = self.conv3d_layers(y) # [B, 1, T, 1, 1] | |
y = y.squeeze(1, 3, 4) # [B, T] | |
assert y.ndim == 2 | |
y = y.reshape([b, 1, t, 1, 1]) | |
out = (y * x).sum(dim=2) | |
return out | |
class SegFormerSECC2PlaneBackbone(nn.Module): | |
def __init__(self, mode='b0', out_channels=96, pncc_cond_mode='cano_src_tgt', lora_args=None): | |
super().__init__() | |
mode2cls = { | |
'b0': mit_b0, | |
'b1': mit_b1, | |
'b2': mit_b2, | |
'b3': mit_b3, | |
'b4': mit_b4, | |
'b5': mit_b5, | |
} | |
self.mode = mode | |
self.pncc_cond_mode = pncc_cond_mode | |
in_dim = 9 if pncc_cond_mode == 'cano_src_tgt' else 6 | |
self.prenet = Conv2dLayer(in_dim, 3, 1, lora_args=lora_args) | |
self.mix_vit = mode2cls[mode]() | |
self.fuse_head = SegFormerHead(mode) | |
if lora_args is None: | |
self.to_plane_cnn = nn.Sequential(*[ | |
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(negative_slope=0.01, inplace=True), | |
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(negative_slope=0.01, inplace=True), | |
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(negative_slope=0.01, inplace=True), | |
nn.UpsamplingBilinear2d(scale_factor=2.), | |
nn.Conv2d(in_channels=256, out_channels=out_channels, kernel_size=3, stride=1, padding=1), | |
]) | |
else: | |
lora_r = self.lora_r = lora_args.get("lora_r", 8) | |
self.to_plane_cnn = nn.Sequential(*[ | |
LoRAConv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1, r=lora_r), | |
nn.LeakyReLU(negative_slope=0.01, inplace=True), | |
LoRAConv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1, r=lora_r), | |
nn.LeakyReLU(negative_slope=0.01, inplace=True), | |
LoRAConv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1, r=lora_r), | |
nn.LeakyReLU(negative_slope=0.01, inplace=True), | |
nn.UpsamplingBilinear2d(scale_factor=2.), | |
LoRAConv2d(in_channels=256, out_channels=out_channels, kernel_size=3, stride=1, padding=1, r=lora_r), | |
]) | |
# if hparams['use_motion_smo_net']: | |
# self.motion_smo_win_size = hparams['motion_smo_win_size'] | |
# self.smo_net = TemporalAttNet(in_dim=out_channels, seq_len=hparams['motion_smo_win_size']) | |
def forward(self, x): | |
""" | |
x: [B, 3, H=512, W=512] or [B, 3, T, H, W] | |
return: | |
plane: [B, 96, H=256, W=256] | |
""" | |
# if hparams['use_motion_smo_net']: | |
# assert x.ndim == 5 | |
# x = rearrange(x, "n c t h w -> (n t) c h w", t=self.motion_smo_win_size) | |
x = self.prenet(x) | |
feats = self.mix_vit(x) | |
fused_feat = self.fuse_head(feats) | |
planes = self.to_plane_cnn(fused_feat) | |
# if hparams['use_motion_smo_net']: | |
# planes = rearrange(planes, "(n t) c h w -> n c t h w", t=self.motion_smo_win_size) | |
# planes = self.smo_net(planes) | |
planes = planes.view(len(planes), 3, -1, planes.shape[-2], planes.shape[-1]) | |
planes_xy = planes[:,0] | |
planes_xy = torch.flip(planes_xy, [2]) | |
planes_xz = planes[:,1] | |
planes_xz = torch.flip(planes_xz, [2]) | |
planes_zy = planes[:,2] | |
planes_zy = torch.flip(planes_zy, [2, 3]) | |
planes = torch.stack([planes_xy, planes_xz, planes_zy], dim=1) # [N, 3, C, H, W] | |
return planes | |
# from modules.hidenerf.new_modules.texture2plane_parser import Texture2PlaneParser | |
# class SegFormerTexture2PlaneBackbone(nn.Module): | |
# def __init__(self, mode='b1'): | |
# super().__init__() | |
# mode2cls = { | |
# 'b0': mit_b0, | |
# 'b1': mit_b1, | |
# 'b2': mit_b2, | |
# 'b3': mit_b3, | |
# 'b4': mit_b4, | |
# 'b5': mit_b5, | |
# } | |
# self.mode = mode | |
# self.prenet = Conv2dLayer(5, 3, 1) | |
# self.tex2plane_parser = Texture2PlaneParser() | |
# self.mix_vit = mode2cls[mode]() | |
# self.fuse_head = SegFormerHead(mode) | |
# if hparams.get("new_tex_mode", False) is True: | |
# self.to_plane_cnn1 = nn.Sequential(*[ | |
# nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), | |
# nn.LeakyReLU(negative_slope=0.01, inplace=True), | |
# nn.UpsamplingBilinear2d(scale_factor=2.), | |
# ]) | |
# self.to_plane_cnn2 = nn.Sequential(*[ | |
# nn.Conv2d(in_channels=256*3, out_channels=256, kernel_size=3, stride=1, padding=1), | |
# nn.LeakyReLU(negative_slope=0.01, inplace=True), | |
# nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), | |
# nn.LeakyReLU(negative_slope=0.01, inplace=True), | |
# nn.Conv2d(in_channels=256, out_channels=96, kernel_size=3, stride=1, padding=1) | |
# ]) | |
# else: | |
# self.to_plane_cnn = nn.Sequential(*[ | |
# nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), | |
# nn.LeakyReLU(negative_slope=0.01, inplace=True), | |
# nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), | |
# nn.LeakyReLU(negative_slope=0.01, inplace=True), | |
# nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), | |
# nn.LeakyReLU(negative_slope=0.01, inplace=True), | |
# nn.UpsamplingBilinear2d(scale_factor=2.), | |
# nn.Conv2d(in_channels=256, out_channels=32, kernel_size=3, stride=1, padding=1), | |
# ]) | |
# def forward(self, x, idx_pixel_to_plane): | |
# """ | |
# x: [B, 3, H=512, W=512] | |
# return: | |
# plane: [B, 96, H=256, W=256] | |
# """ | |
# feats = self.mix_vit(x) | |
# fused_feat = self.fuse_head(feats) # [B, 256, 128, 128] | |
# if hparams.get("new_tex_mode", False) is True: | |
# fused_feat = self.to_plane_cnn1(fused_feat) # [B, 96, 256, 256] | |
# fused_feat = fused_feat.unsqueeze(1).repeat([1, 3, 1, 1, 1]) # [B, 3, 96, 256, 256] | |
# tex_plane = self.tex2plane_parser(fused_feat, idx_pixel_to_plane) # [B, 3, 96, 256, 256] | |
# tex_plane = rearrange(tex_plane, "n k c h w -> n (k c) h w") # [B, 3*96, 256, 256] | |
# tex_plane = self.to_plane_cnn2(tex_plane) # [B, 96, 256, 256] | |
# tex_plane = rearrange(tex_plane, "n (k c) h w -> n k c h w", k=3, c=32) # [B, 3*96, 256, 256] | |
# else: | |
# fused_feat = self.to_plane_cnn(fused_feat) # [B, 32, 256, 256] | |
# fused_feat = fused_feat.unsqueeze(1).repeat([1, 3, 1, 1, 1]) # [B, 3, 32, 256, 256] | |
# tex_plane = self.tex2plane_parser(fused_feat, idx_pixel_to_plane) # [B, 3, 32, 256, 256] | |
# return tex_plane | |
if __name__ == '__main__': | |
import tqdm | |
img2plane = SegFormerTexture2PlaneBackbone() | |
img2plane.cuda() | |
x = torch.randn([4, 3, 512, 512]).cuda() | |
idx = torch.randint(low=0, high=128*128, size=[4, 3, 256*256]).cuda() | |
for _ in tqdm.trange(100): | |
y = img2plane(x, idx) | |
print(" ") |