Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,23 +2,18 @@ import torch
|
|
| 2 |
import gradio as gr
|
| 3 |
from diffusers import StableVideoDiffusionPipeline
|
| 4 |
from diffusers.utils import load_image, export_to_video
|
| 5 |
-
import os
|
| 6 |
import spaces
|
| 7 |
|
| 8 |
# Check if GPU is available
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
-
# Load the pipeline
|
| 12 |
pipeline = StableVideoDiffusionPipeline.from_pretrained(
|
| 13 |
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
|
| 14 |
)
|
| 15 |
pipeline.to(device)
|
| 16 |
|
| 17 |
-
|
| 18 |
-
pipeline.unet.enable_forward_chunking(chunk_size=1)
|
| 19 |
-
|
| 20 |
-
@spaces.GPU
|
| 21 |
-
# Define the video generation function
|
| 22 |
def generate_video(image_path, seed):
|
| 23 |
# Load and preprocess the image
|
| 24 |
image = load_image(image_path)
|
|
@@ -37,21 +32,28 @@ def generate_video(image_path, seed):
|
|
| 37 |
return output_video_path
|
| 38 |
|
| 39 |
# Create the Gradio interface
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
# Launch the interface
|
| 56 |
if __name__ == "__main__":
|
| 57 |
-
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from diffusers import StableVideoDiffusionPipeline
|
| 4 |
from diffusers.utils import load_image, export_to_video
|
|
|
|
| 5 |
import spaces
|
| 6 |
|
| 7 |
# Check if GPU is available
|
| 8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
|
| 10 |
+
# Load the pipeline
|
| 11 |
pipeline = StableVideoDiffusionPipeline.from_pretrained(
|
| 12 |
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
|
| 13 |
)
|
| 14 |
pipeline.to(device)
|
| 15 |
|
| 16 |
+
@spaces.GPU(duration=120)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
def generate_video(image_path, seed):
|
| 18 |
# Load and preprocess the image
|
| 19 |
image = load_image(image_path)
|
|
|
|
| 32 |
return output_video_path
|
| 33 |
|
| 34 |
# Create the Gradio interface
|
| 35 |
+
with gr.Blocks() as demo:
|
| 36 |
+
gr.Markdown("# Stable Video Diffusion")
|
| 37 |
+
gr.Markdown("Generate a video from an uploaded image using Stable Video Diffusion.")
|
| 38 |
+
|
| 39 |
+
with gr.Row():
|
| 40 |
+
with gr.Column():
|
| 41 |
+
image_input = gr.Image(type="filepath", label="Upload Image")
|
| 42 |
+
seed_input = gr.Number(label="Seed", value=666666)
|
| 43 |
+
generate_button = gr.Button("Generate Video")
|
| 44 |
+
with gr.Column():
|
| 45 |
+
video_output = gr.Video(label="Generated Video")
|
| 46 |
+
|
| 47 |
+
with gr.Row():
|
| 48 |
+
example_image = gr.Image("example.jpeg", label="Example Image")
|
| 49 |
+
example_video = gr.Video("generated.mp4", label="Example Video")
|
| 50 |
+
|
| 51 |
+
generate_button.click(
|
| 52 |
+
fn=generate_video,
|
| 53 |
+
inputs=[image_input, seed_input],
|
| 54 |
+
outputs=video_output
|
| 55 |
+
)
|
| 56 |
|
| 57 |
# Launch the interface
|
| 58 |
if __name__ == "__main__":
|
| 59 |
+
demo.launch()
|