File size: 156,955 Bytes
4fc06e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
# Source: https://github.com/iSEE-Laboratory/LLMDet/blob/main/hf_model/modeling_grounding_dino.py 
# Read details: https://github.com/iSEE-Laboratory/LLMDet/tree/main/hf_model
# 
# coding=utf-8
# Copyright 2024 IDEA Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Grounding DINO model."""

import copy
import math
import os
import warnings
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from torch import Tensor, nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable

from transformers.activations import ACT2FN
from transformers.file_utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_scipy_available,
    is_timm_available,
    is_torch_cuda_available,
    is_vision_available,
    replace_return_docstrings,
    requires_backends,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import meshgrid
from transformers.utils import is_accelerate_available, is_ninja_available, logging
from transformers.utils.backbone_utils import load_backbone
from transformers.models.auto import AutoModel
from transformers.models.grounding_dino.configuration_grounding_dino import GroundingDinoConfig


if is_vision_available():
    from transformers.image_transforms import center_to_corners_format

if is_accelerate_available():
    from accelerate import PartialState
    from accelerate.utils import reduce

if is_scipy_available():
    from scipy.optimize import linear_sum_assignment

if is_timm_available():
    from timm import create_model


logger = logging.get_logger(__name__)

MultiScaleDeformableAttention = None


# Copied from models.deformable_detr.load_cuda_kernels
def load_cuda_kernels():
    from torch.utils.cpp_extension import load

    global MultiScaleDeformableAttention
    import transformers
    root = Path(os.path.dirname(transformers.__file__)) / "kernels" / "deformable_detr"
    src_files = [
        root / filename
        for filename in [
            "vision.cpp",
            os.path.join("cpu", "ms_deform_attn_cpu.cpp"),
            os.path.join("cuda", "ms_deform_attn_cuda.cu"),
        ]
    ]

    MultiScaleDeformableAttention = load(
        "MultiScaleDeformableAttention",
        src_files,
        with_cuda=True,
        extra_include_paths=[str(root)],
        extra_cflags=["-DWITH_CUDA=1"],
        extra_cuda_cflags=[
            "-DCUDA_HAS_FP16=1",
            "-D__CUDA_NO_HALF_OPERATORS__",
            "-D__CUDA_NO_HALF_CONVERSIONS__",
            "-D__CUDA_NO_HALF2_OPERATORS__",
        ],
    )


# Copied from transformers.models.deformable_detr.modeling_deformable_detr.MultiScaleDeformableAttentionFunction
class MultiScaleDeformableAttentionFunction(Function):
    @staticmethod
    def forward(
        context,
        value,
        value_spatial_shapes,
        value_level_start_index,
        sampling_locations,
        attention_weights,
        im2col_step,
    ):
        context.im2col_step = im2col_step
        output = MultiScaleDeformableAttention.ms_deform_attn_forward(
            value,
            value_spatial_shapes,
            value_level_start_index,
            sampling_locations,
            attention_weights,
            context.im2col_step,
        )
        context.save_for_backward(
            value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights
        )
        return output

    @staticmethod
    @once_differentiable
    def backward(context, grad_output):
        (
            value,
            value_spatial_shapes,
            value_level_start_index,
            sampling_locations,
            attention_weights,
        ) = context.saved_tensors
        grad_value, grad_sampling_loc, grad_attn_weight = MultiScaleDeformableAttention.ms_deform_attn_backward(
            value,
            value_spatial_shapes,
            value_level_start_index,
            sampling_locations,
            attention_weights,
            grad_output,
            context.im2col_step,
        )

        return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "GroundingDinoConfig"
_CHECKPOINT_FOR_DOC = "IDEA-Research/grounding-dino-tiny"


@dataclass
class GroundingDinoDecoderOutput(ModelOutput):
    """
    Base class for outputs of the GroundingDinoDecoder. This class adds two attributes to
    BaseModelOutputWithCrossAttentions, namely:
    - a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer)
    - a stacked tensor of intermediate reference points.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
            Stacked intermediate hidden states (output of each layer of the decoder).
        intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
            Stacked intermediate reference points (reference points of each layer of the decoder).
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
            plus the initial embedding outputs.
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the self-attention, cross-attention and multi-scale deformable attention heads.
    """

    last_hidden_state: torch.FloatTensor = None
    intermediate_hidden_states: torch.FloatTensor = None
    intermediate_reference_points: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None


@dataclass
class GroundingDinoEncoderOutput(ModelOutput):
    """
    Base class for outputs of the GroundingDinoEncoder. This class extends BaseModelOutput, due to:
    - vision and text last hidden states
    - vision and text intermediate hidden states

    Args:
        last_hidden_state_vision (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the vision encoder.
        last_hidden_state_text (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the text encoder.
        vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the vision embeddings + one for the output of each
            layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the vision encoder at the
            output of each layer plus the initial embedding outputs.
        text_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the text embeddings + one for the output of each layer)
            of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the text encoder at the output of
            each layer plus the initial embedding outputs.
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the text-vision attention, vision-text attention, text-enhancer (self-attention) and
            multi-scale deformable attention heads.
    """

    last_hidden_state_vision: torch.FloatTensor = None
    last_hidden_state_text: torch.FloatTensor = None
    vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    text_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None


@dataclass
class GroundingDinoModelOutput(ModelOutput):
    """
    Base class for outputs of the Grounding DINO encoder-decoder model.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the decoder of the model.
        init_reference_points (`torch.FloatTensor` of shape  `(batch_size, num_queries, 4)`):
            Initial reference points sent through the Transformer decoder.
        intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
            Stacked intermediate hidden states (output of each layer of the decoder).
        intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
            Stacked intermediate reference points (reference points of each layer of the decoder).
        decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
            plus the initial embedding outputs.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the self-attention, cross-attention and multi-scale deformable attention heads.
        encoder_last_hidden_state_vision (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_last_hidden_state_text (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the vision embeddings + one for the output of each
            layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the vision encoder at the
            output of each layer plus the initial embedding outputs.
        encoder_text_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the text embeddings + one for the output of each layer)
            of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the text encoder at the output of
            each layer plus the initial embedding outputs.
        encoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the text-vision attention, vision-text attention, text-enhancer (self-attention) and
            multi-scale deformable attention heads. attention softmax, used to compute the weighted average in the
            bi-attention heads.
        enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.two_stage=True`):
            Predicted bounding boxes scores where the top `config.num_queries` scoring bounding boxes are picked as
            region proposals in the first stage. Output of bounding box binary classification (i.e. foreground and
            background).
        enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.two_stage=True`):
            Logits of predicted bounding boxes coordinates in the first stage.
    """

    last_hidden_state: torch.FloatTensor = None
    init_reference_points: torch.FloatTensor = None
    intermediate_hidden_states: torch.FloatTensor = None
    intermediate_reference_points: torch.FloatTensor = None
    decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    encoder_last_hidden_state_vision: Optional[torch.FloatTensor] = None
    encoder_last_hidden_state_text: Optional[torch.FloatTensor] = None
    encoder_vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    encoder_text_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    encoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    enc_outputs_class: Optional[torch.FloatTensor] = None
    enc_outputs_coord_logits: Optional[torch.FloatTensor] = None


@dataclass
class GroundingDinoObjectDetectionOutput(ModelOutput):
    """
    Output type of [`GroundingDinoForObjectDetection`].

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
            Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
            bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
            scale-invariant IoU loss.
        loss_dict (`Dict`, *optional*):
            A dictionary containing the individual losses. Useful for logging.
        logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
            Classification logits (including no-object) for all queries.
        pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
            Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
            values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
            possible padding). You can use [`~GroundingDinoProcessor.post_process_object_detection`] to retrieve the
            unnormalized bounding boxes.
        auxiliary_outputs (`List[Dict]`, *optional*):
            Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
            and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
            `pred_boxes`) for each decoder layer.
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the decoder of the model.
        decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
            plus the initial embedding outputs.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the self-attention, cross-attention and multi-scale deformable attention heads.
        encoder_last_hidden_state_vision (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_last_hidden_state_text (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the vision embeddings + one for the output of each
            layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the vision encoder at the
            output of each layer plus the initial embedding outputs.
        encoder_text_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the text embeddings + one for the output of each layer)
            of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the text encoder at the output of
            each layer plus the initial embedding outputs.
        encoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the text-vision attention, vision-text attention, text-enhancer (self-attention) and
            multi-scale deformable attention heads.
        intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
            Stacked intermediate hidden states (output of each layer of the decoder).
        intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
            Stacked intermediate reference points (reference points of each layer of the decoder).
        init_reference_points (`torch.FloatTensor` of shape  `(batch_size, num_queries, 4)`):
            Initial reference points sent through the Transformer decoder.
        enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.two_stage=True`):
            Predicted bounding boxes scores where the top `config.num_queries` scoring bounding boxes are picked as
            region proposals in the first stage. Output of bounding box binary classification (i.e. foreground and
            background).
        enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.two_stage=True`):
            Logits of predicted bounding boxes coordinates in the first stage.
    """

    loss: Optional[torch.FloatTensor] = None
    loss_dict: Optional[Dict] = None
    logits: torch.FloatTensor = None
    pred_boxes: torch.FloatTensor = None
    auxiliary_outputs: Optional[List[Dict]] = None
    last_hidden_state: Optional[torch.FloatTensor] = None
    init_reference_points: Optional[torch.FloatTensor] = None
    intermediate_hidden_states: Optional[torch.FloatTensor] = None
    intermediate_reference_points: Optional[torch.FloatTensor] = None
    decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    encoder_last_hidden_state_vision: Optional[torch.FloatTensor] = None
    encoder_last_hidden_state_text: Optional[torch.FloatTensor] = None
    encoder_vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    encoder_text_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    encoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    enc_outputs_class: Optional[torch.FloatTensor] = None
    enc_outputs_coord_logits: Optional[torch.FloatTensor] = None


# Copied from transformers.models.detr.modeling_detr.DetrFrozenBatchNorm2d with Detr->GroundingDino
class GroundingDinoFrozenBatchNorm2d(nn.Module):
    """
    BatchNorm2d where the batch statistics and the affine parameters are fixed.

    Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
    torchvision.models.resnet[18,34,50,101] produce nans.
    """

    def __init__(self, n):
        super().__init__()
        self.register_buffer("weight", torch.ones(n))
        self.register_buffer("bias", torch.zeros(n))
        self.register_buffer("running_mean", torch.zeros(n))
        self.register_buffer("running_var", torch.ones(n))

    def _load_from_state_dict(
        self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
    ):
        num_batches_tracked_key = prefix + "num_batches_tracked"
        if num_batches_tracked_key in state_dict:
            del state_dict[num_batches_tracked_key]

        super()._load_from_state_dict(
            state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
        )

    def forward(self, x):
        # move reshapes to the beginning
        # to make it user-friendly
        weight = self.weight.reshape(1, -1, 1, 1)
        bias = self.bias.reshape(1, -1, 1, 1)
        running_var = self.running_var.reshape(1, -1, 1, 1)
        running_mean = self.running_mean.reshape(1, -1, 1, 1)
        epsilon = 1e-5
        scale = weight * (running_var + epsilon).rsqrt()
        bias = bias - running_mean * scale
        return x * scale + bias


# Copied from transformers.models.detr.modeling_detr.replace_batch_norm with Detr->GroundingDino
def replace_batch_norm(model):
    r"""
    Recursively replace all `torch.nn.BatchNorm2d` with `GroundingDinoFrozenBatchNorm2d`.

    Args:
        model (torch.nn.Module):
            input model
    """
    for name, module in model.named_children():
        if isinstance(module, nn.BatchNorm2d):
            new_module = GroundingDinoFrozenBatchNorm2d(module.num_features)

            if not module.weight.device == torch.device("meta"):
                new_module.weight.data.copy_(module.weight)
                new_module.bias.data.copy_(module.bias)
                new_module.running_mean.data.copy_(module.running_mean)
                new_module.running_var.data.copy_(module.running_var)

            model._modules[name] = new_module

        if len(list(module.children())) > 0:
            replace_batch_norm(module)


class GroundingDinoConvEncoder(nn.Module):
    """
    Convolutional backbone, using either the AutoBackbone API or one from the timm library.

    nn.BatchNorm2d layers are replaced by GroundingDinoFrozenBatchNorm2d as defined above.

    """

    def __init__(self, config):
        super().__init__()

        self.config = config

        if config.use_timm_backbone:
            requires_backends(self, ["timm"])
            backbone = create_model(
                config.backbone,
                pretrained=config.use_pretrained_backbone,
                features_only=True,
                **config.backbone_kwargs,
            )
        else:
            backbone = load_backbone(config)

        # replace batch norm by frozen batch norm
        with torch.no_grad():
            replace_batch_norm(backbone)
        self.model = backbone
        self.intermediate_channel_sizes = (
            self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels
        )

        backbone_model_type = None
        if config.backbone is not None:
            backbone_model_type = config.backbone
        elif config.backbone_config is not None:
            backbone_model_type = config.backbone_config.model_type
        else:
            raise ValueError("Either `backbone` or `backbone_config` should be provided in the config")

        if "resnet" in backbone_model_type:
            for name, parameter in self.model.named_parameters():
                if config.use_timm_backbone:
                    if "layer2" not in name and "layer3" not in name and "layer4" not in name:
                        parameter.requires_grad_(False)
                else:
                    if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name:
                        parameter.requires_grad_(False)

    # Copied from transformers.models.detr.modeling_detr.DetrConvEncoder.forward with Detr->GroundingDino
    def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor):
        # send pixel_values through the model to get list of feature maps
        features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps

        out = []
        for feature_map in features:
            # downsample pixel_mask to match shape of corresponding feature_map
            mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0]
            out.append((feature_map, mask))
        return out


# Copied from transformers.models.detr.modeling_detr.DetrConvModel with Detr->GroundingDino
class GroundingDinoConvModel(nn.Module):
    """
    This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder.
    """

    def __init__(self, conv_encoder, position_embedding):
        super().__init__()
        self.conv_encoder = conv_encoder
        self.position_embedding = position_embedding

    def forward(self, pixel_values, pixel_mask):
        # send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples
        out = self.conv_encoder(pixel_values, pixel_mask)
        pos = []
        for feature_map, mask in out:
            # position encoding
            pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype))

        return out, pos


class GroundingDinoSinePositionEmbedding(nn.Module):
    """
    This is a more standard version of the position embedding, very similar to the one used by the Attention is all you
    need paper, generalized to work on images.
    """

    def __init__(self, config):
        super().__init__()
        self.embedding_dim = config.d_model // 2
        self.temperature = config.positional_embedding_temperature
        self.scale = 2 * math.pi

    def forward(self, pixel_values, pixel_mask):
        y_embed = pixel_mask.cumsum(1, dtype=torch.float32)
        x_embed = pixel_mask.cumsum(2, dtype=torch.float32)
        eps = 1e-6
        y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
        x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale

        dim_t = torch.arange(self.embedding_dim, dtype=torch.float32, device=pixel_values.device)
        dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim)

        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        return pos


class GroundingDinoLearnedPositionEmbedding(nn.Module):
    """
    This module learns positional embeddings up to a fixed maximum size.
    """

    def __init__(self, config):
        super().__init__()

        embedding_dim = config.d_model // 2
        self.row_embeddings = nn.Embedding(50, embedding_dim)
        self.column_embeddings = nn.Embedding(50, embedding_dim)

    def forward(self, pixel_values, pixel_mask=None):
        height, width = pixel_values.shape[-2:]
        width_values = torch.arange(width, device=pixel_values.device)
        height_values = torch.arange(height, device=pixel_values.device)
        x_emb = self.column_embeddings(width_values)
        y_emb = self.row_embeddings(height_values)
        pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
        pos = pos.permute(2, 0, 1)
        pos = pos.unsqueeze(0)
        pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
        return pos


def build_position_encoding(config):
    if config.position_embedding_type == "sine":
        position_embedding = GroundingDinoSinePositionEmbedding(config)
    elif config.position_embedding_type == "learned":
        position_embedding = GroundingDinoLearnedPositionEmbedding(config)
    else:
        raise ValueError(f"Not supported {config.position_embedding_type}")

    return position_embedding


# Copied from transformers.models.deformable_detr.modeling_deformable_detr.multi_scale_deformable_attention
def multi_scale_deformable_attention(
    value: Tensor, value_spatial_shapes: Tensor, sampling_locations: Tensor, attention_weights: Tensor
) -> Tensor:
    batch_size, _, num_heads, hidden_dim = value.shape
    _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
    value_list = value.split([height.item() * width.item() for height, width in value_spatial_shapes], dim=1)
    sampling_grids = 2 * sampling_locations - 1
    sampling_value_list = []
    for level_id, (height, width) in enumerate(value_spatial_shapes):
        # batch_size, height*width, num_heads, hidden_dim
        # -> batch_size, height*width, num_heads*hidden_dim
        # -> batch_size, num_heads*hidden_dim, height*width
        # -> batch_size*num_heads, hidden_dim, height, width
        value_l_ = (
            value_list[level_id].flatten(2).transpose(1, 2).reshape(batch_size * num_heads, hidden_dim, height, width)
        )
        # batch_size, num_queries, num_heads, num_points, 2
        # -> batch_size, num_heads, num_queries, num_points, 2
        # -> batch_size*num_heads, num_queries, num_points, 2
        sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1)
        # batch_size*num_heads, hidden_dim, num_queries, num_points
        sampling_value_l_ = nn.functional.grid_sample(
            value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
        )
        sampling_value_list.append(sampling_value_l_)
    # (batch_size, num_queries, num_heads, num_levels, num_points)
    # -> (batch_size, num_heads, num_queries, num_levels, num_points)
    # -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
    attention_weights = attention_weights.transpose(1, 2).reshape(
        batch_size * num_heads, 1, num_queries, num_levels * num_points
    )
    output = (
        (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
        .sum(-1)
        .view(batch_size, num_heads * hidden_dim, num_queries)
    )
    return output.transpose(1, 2).contiguous()


# Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrMultiscaleDeformableAttention with DeformableDetr->GroundingDino, Deformable DETR->Grounding DINO
class GroundingDinoMultiscaleDeformableAttention(nn.Module):
    """
    Multiscale deformable attention as proposed in Deformable DETR.
    """

    def __init__(self, config: GroundingDinoConfig, num_heads: int, n_points: int):
        super().__init__()

        kernel_loaded = MultiScaleDeformableAttention is not None
        if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded:
            try:
                load_cuda_kernels()
            except Exception as e:
                logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}")

        if config.d_model % num_heads != 0:
            raise ValueError(
                f"embed_dim (d_model) must be divisible by num_heads, but got {config.d_model} and {num_heads}"
            )
        dim_per_head = config.d_model // num_heads
        # check if dim_per_head is power of 2
        if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
            warnings.warn(
                "You'd better set embed_dim (d_model) in GroundingDinoMultiscaleDeformableAttention to make the"
                " dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
                " implementation."
            )

        self.im2col_step = 64

        self.d_model = config.d_model
        self.n_levels = config.num_feature_levels
        self.n_heads = num_heads
        self.n_points = n_points

        self.sampling_offsets = nn.Linear(config.d_model, num_heads * self.n_levels * n_points * 2)
        self.attention_weights = nn.Linear(config.d_model, num_heads * self.n_levels * n_points)
        self.value_proj = nn.Linear(config.d_model, config.d_model)
        self.output_proj = nn.Linear(config.d_model, config.d_model)

        self.disable_custom_kernels = config.disable_custom_kernels

        self._reset_parameters()

    def _reset_parameters(self):
        nn.init.constant_(self.sampling_offsets.weight.data, 0.0)
        default_dtype = torch.get_default_dtype()
        thetas = torch.arange(self.n_heads, dtype=torch.int64).to(default_dtype) * (2.0 * math.pi / self.n_heads)
        grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
        grid_init = (
            (grid_init / grid_init.abs().max(-1, keepdim=True)[0])
            .view(self.n_heads, 1, 1, 2)
            .repeat(1, self.n_levels, self.n_points, 1)
        )
        for i in range(self.n_points):
            grid_init[:, :, i, :] *= i + 1
        with torch.no_grad():
            self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
        nn.init.constant_(self.attention_weights.weight.data, 0.0)
        nn.init.constant_(self.attention_weights.bias.data, 0.0)
        nn.init.xavier_uniform_(self.value_proj.weight.data)
        nn.init.constant_(self.value_proj.bias.data, 0.0)
        nn.init.xavier_uniform_(self.output_proj.weight.data)
        nn.init.constant_(self.output_proj.bias.data, 0.0)

    def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
        return tensor if position_embeddings is None else tensor + position_embeddings

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        position_embeddings: Optional[torch.Tensor] = None,
        reference_points=None,
        spatial_shapes=None,
        level_start_index=None,
        output_attentions: bool = False,
    ):
        # add position embeddings to the hidden states before projecting to queries and keys
        if position_embeddings is not None:
            hidden_states = self.with_pos_embed(hidden_states, position_embeddings)

        batch_size, num_queries, _ = hidden_states.shape
        batch_size, sequence_length, _ = encoder_hidden_states.shape
        if (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() != sequence_length:
            raise ValueError(
                "Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
            )

        value = self.value_proj(encoder_hidden_states)
        if attention_mask is not None:
            # we invert the attention_mask
            value = value.masked_fill(~attention_mask[..., None], float(0))
        value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
        sampling_offsets = self.sampling_offsets(hidden_states).view(
            batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
        )
        attention_weights = self.attention_weights(hidden_states).view(
            batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
        )
        attention_weights = F.softmax(attention_weights, -1).view(
            batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
        )
        # batch_size, num_queries, n_heads, n_levels, n_points, 2
        num_coordinates = reference_points.shape[-1]
        if num_coordinates == 2:
            offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
            sampling_locations = (
                reference_points[:, :, None, :, None, :]
                + sampling_offsets / offset_normalizer[None, None, None, :, None, :]
            )
        elif num_coordinates == 4:
            sampling_locations = (
                reference_points[:, :, None, :, None, :2]
                + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
            )
        else:
            raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")

        if self.disable_custom_kernels:
            # PyTorch implementation
            output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights)
        else:
            try:
                # custom kernel
                output = MultiScaleDeformableAttentionFunction.apply(
                    value,
                    spatial_shapes,
                    level_start_index,
                    sampling_locations,
                    attention_weights,
                    self.im2col_step,
                )
            except Exception:
                # PyTorch implementation
                output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights)
        output = self.output_proj(output)

        return output, attention_weights


class GroundingDinoTextEnhancerLayer(nn.Module):
    """Vanilla Transformer with text embeddings as input"""

    def __init__(self, config):
        super().__init__()
        self.self_attn = GroundingDinoMultiheadAttention(
            config, num_attention_heads=config.encoder_attention_heads // 2
        )

        # Implementation of Feedforward model
        self.fc1 = nn.Linear(config.d_model, config.encoder_ffn_dim // 2)
        self.fc2 = nn.Linear(config.encoder_ffn_dim // 2, config.d_model)

        self.layer_norm_before = nn.LayerNorm(config.d_model, config.layer_norm_eps)
        self.layer_norm_after = nn.LayerNorm(config.d_model, config.layer_norm_eps)

        self.activation = ACT2FN[config.activation_function]
        self.num_heads = config.encoder_attention_heads // 2
        self.dropout = config.text_enhancer_dropout

    def with_pos_embed(self, hidden_state: Tensor, position_embeddings: Optional[Tensor]):
        return hidden_state if position_embeddings is None else hidden_state + position_embeddings

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_masks: Optional[torch.BoolTensor] = None,
        position_embeddings: Optional[torch.FloatTensor] = None,
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
        """Text self-attention to enhance projection of text features generated by
        the text encoder (AutoModel based on text_config) within GroundingDinoEncoderLayer

        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_dim)`):
                Text features generated by the text encoder.
            attention_masks (`torch.BoolTensor`, *optional*):
                Attention mask for text self-attention. False for real tokens and True for padding tokens.
            position_embeddings (`torch.FloatTensor`, *optional*):
                Position embeddings to be added to the hidden states.

        Returns:
            `tuple(torch.FloatTensor)` comprising two elements:
            - **hidden_states** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) --
                Output of the text self-attention layer.
            - **attention_weights** (`torch.FloatTensor` of shape `(batch_size, num_heads, sequence_length,
              sequence_length)`) --
                Attention weights of the text self-attention layer.
        """

        # repeat attn mask
        if attention_masks.dim() == 3 and attention_masks.shape[0] == hidden_states.shape[0]:
            # batch_size, num_queries, num_keys
            attention_masks = attention_masks[:, None, :, :]
            attention_masks = attention_masks.repeat(1, self.num_heads, 1, 1)

            dtype = hidden_states.dtype
            attention_masks = attention_masks.to(dtype=dtype)  # fp16 compatibility
            attention_masks = (1.0 - attention_masks) * torch.finfo(dtype).min

        queries = keys = self.with_pos_embed(hidden_states, position_embeddings)
        attention_output, attention_weights = self.self_attn(
            queries=queries,
            keys=keys,
            values=hidden_states,
            attention_mask=attention_masks,
            output_attentions=True,
        )
        attention_output = nn.functional.dropout(attention_output, p=self.dropout, training=self.training)
        hidden_states = hidden_states + attention_output
        hidden_states = self.layer_norm_before(hidden_states)

        residual = hidden_states
        hidden_states = self.activation(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = hidden_states + residual
        hidden_states = self.layer_norm_after(hidden_states)

        return hidden_states, attention_weights


class GroundingDinoBiMultiHeadAttention(nn.Module):
    def __init__(self, config):
        super().__init__()

        vision_dim = text_dim = config.d_model
        embed_dim = config.encoder_ffn_dim // 2
        num_heads = config.encoder_attention_heads // 2
        dropout = config.fusion_dropout

        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        self.vision_dim = vision_dim
        self.text_dim = text_dim

        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"`embed_dim` must be divisible by `num_heads` (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
            )
        self.scale = self.head_dim ** (-0.5)
        self.dropout = dropout

        self.vision_proj = nn.Linear(self.vision_dim, self.embed_dim)
        self.text_proj = nn.Linear(self.text_dim, self.embed_dim)
        self.values_vision_proj = nn.Linear(self.vision_dim, self.embed_dim)
        self.values_text_proj = nn.Linear(self.text_dim, self.embed_dim)

        self.out_vision_proj = nn.Linear(self.embed_dim, self.vision_dim)
        self.out_text_proj = nn.Linear(self.embed_dim, self.text_dim)

    def _reshape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
        return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        vision_features: torch.FloatTensor,
        text_features: torch.FloatTensor,
        vision_attention_mask: Optional[torch.BoolTensor] = None,
        text_attention_mask: Optional[torch.BoolTensor] = None,
    ) -> Tuple[Tuple[torch.FloatTensor, torch.FloatTensor], Tuple[torch.FloatTensor, torch.FloatTensor]]:
        """Image-to-text and text-to-image cross-attention

        Args:
            vision_features (`torch.FloatTensor` of shape `(batch_size, vision_sequence_length, hidden_dim)`):
                Projected flattened image features generated by the vision backbone.
            text_features (`torch.FloatTensor` of shape `(batch_size, text_sequence_length, hidden_dim)`):
                Projected text features generated by the text encoder.
            vision_attention_mask (`torch.BoolTensor`, **optional**):
                Attention mask for image-to-text cross-attention. False for real tokens and True for padding tokens.
            text_attention_mask (`torch.BoolTensor`, **optional**):
                Attention mask for text-to-image cross-attention. False for real tokens and True for padding tokens.

        Returns:
            `tuple(tuple(torch.FloatTensor), tuple(torch.FloatTensor))` where each inner tuple comprises an attention
            output and weights:
            - **vision_attn_output** (`torch.FloatTensor` of shape `(batch_size, vision_sequence_length, hidden_din)`)
              --
                Output of the image-to-text cross-attention layer.
            - **vision_attn_weights** (`torch.FloatTensor` of shape `(batch_size, num_heads, vision_sequence_length,
              vision_sequence_length)`) --
                Attention weights of the image-to-text cross-attention layer.
            - **text_attn_output** (`torch.FloatTensor` of shape `(batch_size, text_sequence_length, hidden_dim)`) --
                Output of the text-to-image cross-attention layer.
            - **text_attn_weights** (`torch.FloatTensor` of shape `(batch_size, num_heads, text_sequence_length,
              text_sequence_length)`) --
                Attention weights of the text-to-image cross-attention layer.
        """
        batch_size, tgt_len, _ = vision_features.size()

        vision_query_states = self.vision_proj(vision_features) * self.scale
        vision_query_states = self._reshape(vision_query_states, tgt_len, batch_size)

        text_key_states = self.text_proj(text_features)
        text_key_states = self._reshape(text_key_states, -1, batch_size)

        vision_value_states = self.values_vision_proj(vision_features)
        vision_value_states = self._reshape(vision_value_states, -1, batch_size)

        text_value_states = self.values_text_proj(text_features)
        text_value_states = self._reshape(text_value_states, -1, batch_size)

        proj_shape = (batch_size * self.num_heads, -1, self.head_dim)

        vision_query_states = vision_query_states.view(*proj_shape)
        text_key_states = text_key_states.view(*proj_shape)
        vision_value_states = vision_value_states.view(*proj_shape)
        text_value_states = text_value_states.view(*proj_shape)

        src_len = text_key_states.size(1)
        attn_weights = torch.bmm(vision_query_states, text_key_states.transpose(1, 2))  # bs*nhead, nimg, ntxt

        if attn_weights.size() != (batch_size * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(batch_size * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
            )

        attn_weights = attn_weights - attn_weights.max()
        # Do not increase -50000/50000, data type half has quite limited range
        attn_weights = torch.clamp(attn_weights, min=-50000, max=50000)

        attn_weights_transposed = attn_weights.transpose(1, 2)
        text_attn_weights = attn_weights_transposed - torch.max(attn_weights_transposed, dim=-1, keepdim=True)[0]

        # Do not increase -50000/50000, data type half has quite limited range
        text_attn_weights = torch.clamp(text_attn_weights, min=-50000, max=50000)

        # mask vision for language
        if vision_attention_mask is not None:
            vision_attention_mask = (
                vision_attention_mask[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
            )
            text_attn_weights.masked_fill_(vision_attention_mask, float("-inf"))

        text_attn_weights = text_attn_weights.softmax(dim=-1)

        # mask language for vision
        if text_attention_mask is not None:
            text_attention_mask = text_attention_mask[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
            attn_weights.masked_fill_(text_attention_mask, float("-inf"))
        vision_attn_weights = attn_weights.softmax(dim=-1)

        vision_attn_probs = F.dropout(vision_attn_weights, p=self.dropout, training=self.training)
        text_attn_probs = F.dropout(text_attn_weights, p=self.dropout, training=self.training)

        vision_attn_output = torch.bmm(vision_attn_probs, text_value_states)
        text_attn_output = torch.bmm(text_attn_probs, vision_value_states)

        if vision_attn_output.size() != (batch_size * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`vision_attn_output` should be of size {(batch_size, self.num_heads, tgt_len, self.head_dim)}, but is {vision_attn_output.size()}"
            )

        if text_attn_output.size() != (batch_size * self.num_heads, src_len, self.head_dim):
            raise ValueError(
                f"`text_attn_output` should be of size {(batch_size, self.num_heads, src_len, self.head_dim)}, but is {text_attn_output.size()}"
            )

        vision_attn_output = vision_attn_output.view(batch_size, self.num_heads, tgt_len, self.head_dim)
        vision_attn_output = vision_attn_output.transpose(1, 2)
        vision_attn_output = vision_attn_output.reshape(batch_size, tgt_len, self.embed_dim)

        text_attn_output = text_attn_output.view(batch_size, self.num_heads, src_len, self.head_dim)
        text_attn_output = text_attn_output.transpose(1, 2)
        text_attn_output = text_attn_output.reshape(batch_size, src_len, self.embed_dim)

        vision_attn_output = self.out_vision_proj(vision_attn_output)
        text_attn_output = self.out_text_proj(text_attn_output)

        return (vision_attn_output, vision_attn_weights), (text_attn_output, text_attn_weights)


# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
    however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
    layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
    argument.
    """
    if drop_prob == 0.0 or not training:
        return input
    keep_prob = 1 - drop_prob
    shape = (input.shape[0],) + (1,) * (input.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
    random_tensor.floor_()  # binarize
    output = input.div(keep_prob) * random_tensor
    return output


# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->GroundingDino
class GroundingDinoDropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob: Optional[float] = None) -> None:
        super().__init__()
        self.drop_prob = drop_prob

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return drop_path(hidden_states, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return "p={}".format(self.drop_prob)


class GroundingDinoFusionLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        drop_path = config.fusion_droppath

        # pre layer norm
        self.layer_norm_vision = nn.LayerNorm(config.d_model, config.layer_norm_eps)
        self.layer_norm_text = nn.LayerNorm(config.d_model, config.layer_norm_eps)
        self.attn = GroundingDinoBiMultiHeadAttention(config)

        # add layer scale for training stability
        self.drop_path = GroundingDinoDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        init_values = 1e-4
        self.vision_param = nn.Parameter(init_values * torch.ones((config.d_model)), requires_grad=True)
        self.text_param = nn.Parameter(init_values * torch.ones((config.d_model)), requires_grad=True)

    def forward(
        self,
        vision_features: torch.FloatTensor,
        text_features: torch.FloatTensor,
        attention_mask_vision: Optional[torch.BoolTensor] = None,
        attention_mask_text: Optional[torch.BoolTensor] = None,
    ) -> Tuple[Tuple[torch.FloatTensor, torch.FloatTensor], Tuple[torch.FloatTensor, torch.FloatTensor]]:
        """Image and text features fusion

        Args:
            vision_features (`torch.FloatTensor` of shape `(batch_size, vision_sequence_length, hidden_dim)`):
                Projected flattened image features generated by the vision backbone.
            text_features (`torch.FloatTensor` of shape `(batch_size, text_sequence_length, hidden_dim)`):
                Projected text features generated by the text encoder.
            attention_mask_vision (`torch.BoolTensor`, **optional**):
                Attention mask for image-to-text cross-attention. False for real tokens and True for padding tokens.
            attention_mask_text (`torch.BoolTensor`, **optional**):
                Attention mask for text-to-image cross-attention. False for real tokens and True for padding tokens.

        Returns:
            `tuple(tuple(torch.FloatTensor), tuple(torch.FloatTensor))` where each inner tuple comprises an enhanced
            feature and attention output and weights:
            - **vision_features** (`torch.FloatTensor` of shape `(batch_size, vision_sequence_length, vision_dim)`) --
                Updated vision features with attention output from image-to-text cross-attention layer.
            - **vision_attn_weights** (`torch.FloatTensor` of shape `(batch_size, num_heads, vision_sequence_length,
              vision_sequence_length)`) --
                Attention weights of the image-to-text cross-attention layer.
            - **text_features** (`torch.FloatTensor` of shape `(batch_size, text_sequence_length, text_dim)`) --
                Updated text features with attention output from text-to-image cross-attention layer.
            - **text_attn_weights** (`torch.FloatTensor` of shape `(batch_size, num_heads, text_sequence_length,
              text_sequence_length)`) --
                Attention weights of the text-to-image cross-attention layer.
        """
        vision_features = self.layer_norm_vision(vision_features)
        text_features = self.layer_norm_text(text_features)
        (delta_v, vision_attn), (delta_t, text_attn) = self.attn(
            vision_features,
            text_features,
            vision_attention_mask=attention_mask_vision,
            text_attention_mask=attention_mask_text,
        )
        vision_features = vision_features + self.drop_path(self.vision_param * delta_v)
        text_features = text_features + self.drop_path(self.text_param * delta_t)

        return (vision_features, vision_attn), (text_features, text_attn)


class GroundingDinoDeformableLayer(nn.Module):
    def __init__(self, config: GroundingDinoConfig):
        super().__init__()
        self.embed_dim = config.d_model
        self.self_attn = GroundingDinoMultiscaleDeformableAttention(
            config, num_heads=config.encoder_attention_heads, n_points=config.encoder_n_points
        )
        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, config.layer_norm_eps)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim, config.layer_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        position_embeddings: torch.Tensor = None,
        reference_points=None,
        spatial_shapes=None,
        level_start_index=None,
        output_attentions: bool = False,
    ):
        """
        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Input to the layer.
            attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
                Attention mask.
            position_embeddings (`torch.FloatTensor`, *optional*):
                Position embeddings, to be added to `hidden_states`.
            reference_points (`torch.FloatTensor`, *optional*):
                Reference points.
            spatial_shapes (`torch.LongTensor`, *optional*):
                Spatial shapes of the backbone feature maps.
            level_start_index (`torch.LongTensor`, *optional*):
                Level start index.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states

        # Apply Multi-scale Deformable Attention Module on the multi-scale feature maps.
        hidden_states, attn_weights = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=attention_mask,
            position_embeddings=position_embeddings,
            reference_points=reference_points,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            output_attentions=output_attentions,
        )

        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        residual = hidden_states
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)

        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        hidden_states = residual + hidden_states
        hidden_states = self.final_layer_norm(hidden_states)

        if self.training:
            if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
                clamp_value = torch.finfo(hidden_states.dtype).max - 1000
                hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        return hidden_states, attn_weights


# Based on https://github.com/IDEA-Research/GroundingDINO/blob/2b62f419c292ca9c518daae55512fabc3fead4a4/groundingdino/models/GroundingDINO/utils.py#L24
def get_sine_pos_embed(
    pos_tensor: torch.Tensor, num_pos_feats: int = 128, temperature: int = 10000, exchange_xy: bool = True
) -> Tensor:
    """
    Generate sine position embeddings from a position tensor.

    Args:
        pos_tensor (torch.Tensor):
            Tensor containing positions. Shape: [..., n].
        num_pos_feats (`int`, *optional*, defaults to 128):
            Projected shape for each float in the tensor.
        temperature (`int`, *optional*, defaults to 10000):
            Temperature in the sine/cosine function.
        exchange_xy (`bool`, *optional*, defaults to `True`):
            Exchange pos x and pos y. For example, input tensor is [x,y], the results will be [pos(y), pos(x)].

    Returns:
        position_embeddings (torch.Tensor): shape: [..., n * hidden_size].
    """
    scale = 2 * math.pi
    dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device)
    dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)

    def sine_func(x: torch.Tensor):
        sin_x = x * scale / dim_t
        sin_x = torch.stack((sin_x[..., 0::2].sin(), sin_x[..., 1::2].cos()), dim=3).flatten(2)
        return sin_x

    pos_tensor = pos_tensor.split([1] * pos_tensor.shape[-1], dim=-1)
    position_embeddings = [sine_func(x) for x in pos_tensor]
    if exchange_xy:
        position_embeddings[0], position_embeddings[1] = position_embeddings[1], position_embeddings[0]
    position_embeddings = torch.cat(position_embeddings, dim=-1)
    return position_embeddings


class GroundingDinoEncoderLayer(nn.Module):
    def __init__(self, config) -> None:
        super().__init__()

        self.d_model = config.d_model

        self.text_enhancer_layer = GroundingDinoTextEnhancerLayer(config)
        self.fusion_layer = GroundingDinoFusionLayer(config)
        self.deformable_layer = GroundingDinoDeformableLayer(config)

    def get_text_position_embeddings(
        self,
        text_features: Tensor,
        text_position_embedding: Optional[torch.Tensor],
        text_position_ids: Optional[torch.Tensor],
    ) -> Tensor:
        batch_size, seq_length, _ = text_features.shape
        if text_position_embedding is None and text_position_ids is None:
            text_position_embedding = torch.arange(seq_length, device=text_features.device)
            text_position_embedding = text_position_embedding.float()
            text_position_embedding = text_position_embedding.unsqueeze(0).unsqueeze(-1)
            text_position_embedding = text_position_embedding.repeat(batch_size, 1, 1)
            text_position_embedding = get_sine_pos_embed(
                text_position_embedding, num_pos_feats=self.d_model, exchange_xy=False
            )
        if text_position_ids is not None:
            text_position_embedding = get_sine_pos_embed(
                text_position_ids[..., None], num_pos_feats=self.d_model, exchange_xy=False
            )

        return text_position_embedding

    def forward(
        self,
        vision_features: Tensor,
        vision_position_embedding: Tensor,
        spatial_shapes: Tensor,
        level_start_index: Tensor,
        key_padding_mask: Tensor,
        reference_points: Tensor,
        text_features: Optional[Tensor] = None,
        text_attention_mask: Optional[Tensor] = None,
        text_position_embedding: Optional[Tensor] = None,
        text_self_attention_masks: Optional[Tensor] = None,
        text_position_ids: Optional[Tensor] = None,
    ):
        text_position_embedding = self.get_text_position_embeddings(
            text_features, text_position_embedding, text_position_ids
        )

        (vision_features, vision_fused_attn), (text_features, text_fused_attn) = self.fusion_layer(
            vision_features=vision_features,
            text_features=text_features,
            attention_mask_vision=key_padding_mask,
            attention_mask_text=text_attention_mask,
        )

        (text_features, text_enhanced_attn) = self.text_enhancer_layer(
            hidden_states=text_features,
            attention_masks=~text_self_attention_masks,  # note we use ~ for mask here
            position_embeddings=(text_position_embedding if text_position_embedding is not None else None),
        )

        (vision_features, vision_deformable_attn) = self.deformable_layer(
            hidden_states=vision_features,
            attention_mask=~key_padding_mask,
            position_embeddings=vision_position_embedding,
            reference_points=reference_points,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
        )

        return (
            (vision_features, text_features),
            (vision_fused_attn, text_fused_attn, text_enhanced_attn, vision_deformable_attn),
        )


class GroundingDinoMultiheadAttention(nn.Module):
    """Equivalent implementation of nn.MultiheadAttention with `batch_first=True`."""

    def __init__(self, config, num_attention_heads=None):
        super().__init__()
        if config.hidden_size % num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({num_attention_heads})"
            )

        self.num_attention_heads = num_attention_heads
        self.attention_head_size = int(config.hidden_size / num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.out_proj = nn.Linear(config.hidden_size, config.hidden_size)

        self.dropout = nn.Dropout(config.attention_dropout)

    def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        queries: torch.Tensor,
        keys: torch.Tensor,
        values: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor]:
        query_layer = self.transpose_for_scores(self.query(queries))
        key_layer = self.transpose_for_scores(self.key(keys))
        value_layer = self.transpose_for_scores(self.value(values))

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in GroundingDinoModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(new_context_layer_shape)

        context_layer = self.out_proj(context_layer)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        return outputs


class GroundingDinoDecoderLayer(nn.Module):
    def __init__(self, config: GroundingDinoConfig):
        super().__init__()
        self.embed_dim = config.d_model

        # self-attention
        self.self_attn = GroundingDinoMultiheadAttention(config, num_attention_heads=config.decoder_attention_heads)

        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout

        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, config.layer_norm_eps)
        # cross-attention text
        self.encoder_attn_text = GroundingDinoMultiheadAttention(
            config, num_attention_heads=config.decoder_attention_heads
        )
        self.encoder_attn_text_layer_norm = nn.LayerNorm(self.embed_dim, config.layer_norm_eps)
        # cross-attention
        self.encoder_attn = GroundingDinoMultiscaleDeformableAttention(
            config,
            num_heads=config.decoder_attention_heads,
            n_points=config.decoder_n_points,
        )
        self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim, config.layer_norm_eps)
        # feedforward neural networks
        self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim, config.layer_norm_eps)

    def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
        return tensor if position_embeddings is None else tensor + position_embeddings

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Optional[torch.Tensor] = None,
        reference_points=None,
        spatial_shapes=None,
        level_start_index=None,
        vision_encoder_hidden_states: Optional[torch.Tensor] = None,
        vision_encoder_attention_mask: Optional[torch.Tensor] = None,
        text_encoder_hidden_states: Optional[torch.Tensor] = None,
        text_encoder_attention_mask: Optional[torch.Tensor] = None,
        self_attn_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = False,
    ):
        residual = hidden_states

        # Self Attention
        queries = keys = self.with_pos_embed(hidden_states, position_embeddings)
        hidden_states, self_attn_weights = self.self_attn(
            queries=queries,
            keys=keys,
            values=hidden_states,
            attention_mask=self_attn_mask,
            output_attentions=True,
        )

        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        second_residual = hidden_states

        # Cross-Attention Text
        queries = self.with_pos_embed(hidden_states, position_embeddings)
        hidden_states, text_cross_attn_weights = self.encoder_attn_text(
            queries=queries,
            keys=text_encoder_hidden_states,
            values=text_encoder_hidden_states,
            attention_mask=text_encoder_attention_mask,
            output_attentions=True,
        )

        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = second_residual + hidden_states
        hidden_states = self.encoder_attn_text_layer_norm(hidden_states)

        third_residual = hidden_states

        # Cross-Attention
        cross_attn_weights = None
        hidden_states, cross_attn_weights = self.encoder_attn(
            hidden_states=hidden_states,
            attention_mask=vision_encoder_attention_mask,
            encoder_hidden_states=vision_encoder_hidden_states,
            encoder_attention_mask=vision_encoder_attention_mask,
            position_embeddings=position_embeddings,
            reference_points=reference_points,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            output_attentions=output_attentions,
        )

        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = third_residual + hidden_states
        hidden_states = self.encoder_attn_layer_norm(hidden_states)

        # Fully Connected
        residual = hidden_states
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.final_layer_norm(hidden_states)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights, text_cross_attn_weights, cross_attn_weights)

        return outputs


# class GroundingDinoContrastiveEmbedding(nn.Module):
#     def __init__(self, config):
#         super().__init__()
#         self.max_text_len = config.max_text_len
#         bias_value = -math.log((1 - 0.01) / 0.01)
#         self.bias = nn.Parameter(torch.Tensor([bias_value]))

#     def forward(
#         self,
#         vision_hidden_state: torch.FloatTensor,
#         text_hidden_state: torch.FloatTensor,
#         text_token_mask: torch.BoolTensor,
#     ) -> torch.FloatTensor:
#         output = vision_hidden_state @ text_hidden_state.transpose(-1, -2)
#         output = output + self.bias
#         output = output.masked_fill(~text_token_mask[:, None, :], float("-inf"))

#         # padding to max_text_len
#         new_output = torch.full((*output.shape[:-1], self.max_text_len), float("-inf"), device=output.device)
#         new_output[..., : output.shape[-1]] = output

#         return new_output



class GroundingDinoContrastiveEmbedding(nn.Module):
    """text visual ContrastiveEmbed layer.
    """

    def __init__(self, config):
        super().__init__()
        self.max_text_len = config.max_text_len
        self.log_scale = 'auto'

        self.bias = None
        if True:
            bias_value = -math.log((1 - 0.01) / 0.01)
            self.bias = nn.Parameter(
                torch.Tensor([bias_value]), requires_grad=True)

    def forward(self, 
                vision_hidden_state: torch.FloatTensor,
                text_hidden_state: torch.FloatTensor,
                text_token_mask: torch.BoolTensor,) -> Tensor:
        """Forward function.

        Args:
            visual_feat (Tensor): Visual features.
            text_feat (Tensor): Text features.
            text_token_mask (Tensor): A mask used for text feats.

        Returns:
            Tensor: Classification score.
        """
        y = text_hidden_state
        text_token_mask = text_token_mask
        res = vision_hidden_state @ y.transpose(-1, -2)
        if isinstance(self.log_scale, nn.Parameter):
            res = res * self.log_scale.exp()
        elif self.log_scale == 'auto':
            # NOTE: similar to the normalizer in self-attention
            res = res / math.sqrt(vision_hidden_state.shape[-1])
        if self.bias is not None:
            res = res + self.bias
        res.masked_fill_(~text_token_mask[:, None, :], float('-inf'))

        new_res = torch.full((*res.shape[:-1], self.max_text_len),
                             float('-inf'),
                             device=res.device)
        new_res[..., :res.shape[-1]] = res

        return new_res


class GroundingDinoPreTrainedModel(PreTrainedModel):
    config_class = GroundingDinoConfig
    base_model_prefix = "model"
    main_input_name = "pixel_values"

    def _init_weights(self, module):
        std = self.config.init_std

        if isinstance(module, GroundingDinoLearnedPositionEmbedding):
            nn.init.uniform_(module.row_embeddings.weight)
            nn.init.uniform_(module.column_embeddings.weight)
        elif isinstance(module, GroundingDinoMultiscaleDeformableAttention):
            module._reset_parameters()
        elif isinstance(module, GroundingDinoBiMultiHeadAttention):
            nn.init.xavier_uniform_(module.vision_proj.weight)
            module.vision_proj.bias.data.fill_(0)
            nn.init.xavier_uniform_(module.text_proj.weight)
            module.text_proj.bias.data.fill_(0)
            nn.init.xavier_uniform_(module.values_vision_proj.weight)
            module.values_vision_proj.bias.data.fill_(0)
            nn.init.xavier_uniform_(module.values_text_proj.weight)
            module.values_text_proj.bias.data.fill_(0)
            nn.init.xavier_uniform_(module.out_vision_proj.weight)
            module.out_vision_proj.bias.data.fill_(0)
            nn.init.xavier_uniform_(module.out_text_proj.weight)
            module.out_text_proj.bias.data.fill_(0)
        elif isinstance(module, (GroundingDinoEncoderLayer, GroundingDinoDecoderLayer)):
            for p in module.parameters():
                if p.dim() > 1:
                    nn.init.normal_(p, mean=0.0, std=std)
        elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, GroundingDinoMLPPredictionHead):
            nn.init.constant_(module.layers[-1].weight.data, 0)
            nn.init.constant_(module.layers[-1].bias.data, 0)

        if hasattr(module, "reference_points") and not self.config.two_stage:
            nn.init.xavier_uniform_(module.reference_points.weight.data, gain=1.0)
            nn.init.constant_(module.reference_points.bias.data, 0.0)
        if hasattr(module, "level_embed"):
            nn.init.normal_(module.level_embed)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, GroundingDinoDecoder):
            module.gradient_checkpointing = value


GROUNDING_DINO_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`GroundingDinoConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

GROUNDING_DINO_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Padding will be ignored by default should you provide it.

            Pixel values can be obtained using [`AutoImageProcessor`]. See [`GroundingDinoImageProcessor.__call__`] for
            details.

        input_ids (`torch.LongTensor` of shape `(batch_size, text_sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`GroundingDinoTokenizer.__call__`] for details.

        token_type_ids (`torch.LongTensor` of shape `(batch_size, text_sequence_length)`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`: 0 corresponds to a `sentence A` token, 1 corresponds to a `sentence B` token

            [What are token type IDs?](../glossary#token-type-ids)

        attention_mask (`torch.LongTensor` of shape `(batch_size, text_sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are real (i.e. **not masked**),
            - 0 for tokens that are padding (i.e. **masked**).

            [What are attention masks?](../glossary#attention-mask)

        pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
            Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:

            - 1 for pixels that are real (i.e. **not masked**),
            - 0 for pixels that are padding (i.e. **masked**).

            [What are attention masks?](../glossary#attention-mask)

        encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
            Tuple consists of (`last_hidden_state_vision`, *optional*: `last_hidden_state_text`, *optional*:
            `vision_hidden_states`, *optional*: `text_hidden_states`, *optional*: `attentions`)
            `last_hidden_state_vision` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence
            of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the
            decoder.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""


class GroundingDinoEncoder(GroundingDinoPreTrainedModel):
    """
    Transformer encoder consisting of *config.encoder_layers* deformable attention layers. Each layer is a
    [`GroundingDinoEncoderLayer`].

    The encoder updates the flattened multi-scale feature maps through multiple deformable attention layers.

    Args:
        config: GroundingDinoConfig
    """

    def __init__(self, config: GroundingDinoConfig):
        super().__init__(config)

        self.dropout = config.dropout
        self.layers = nn.ModuleList([GroundingDinoEncoderLayer(config) for _ in range(config.encoder_layers)])

        # Initialize weights and apply final processing
        self.post_init()

    @staticmethod
    def get_reference_points(spatial_shapes, valid_ratios, device):
        """
        Get reference points for each feature map.

        Args:
            spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
                Spatial shapes of each feature map.
            valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
                Valid ratios of each feature map.
            device (`torch.device`):
                Device on which to create the tensors.
        Returns:
            `torch.FloatTensor` of shape `(batch_size, num_queries, num_feature_levels, 2)`
        """
        reference_points_list = []
        for level, (height, width) in enumerate(spatial_shapes):
            ref_y, ref_x = meshgrid(
                torch.linspace(0.5, height - 0.5, height, dtype=torch.float32, device=device),
                torch.linspace(0.5, width - 0.5, width, dtype=torch.float32, device=device),
                indexing="ij",
            )
            # TODO: valid_ratios could be useless here. check https://github.com/fundamentalvision/Deformable-DETR/issues/36
            ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, level, 1] * height)
            ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, level, 0] * width)
            ref = torch.stack((ref_x, ref_y), -1)
            reference_points_list.append(ref)
        reference_points = torch.cat(reference_points_list, 1)
        reference_points = reference_points[:, :, None] * valid_ratios[:, None]
        return reference_points

    def forward(
        self,
        vision_features: Tensor,
        vision_attention_mask: Tensor,
        vision_position_embedding: Tensor,
        spatial_shapes: Tensor,
        level_start_index: Tensor,
        valid_ratios=None,
        text_features: Optional[Tensor] = None,
        text_attention_mask: Optional[Tensor] = None,
        text_position_embedding: Optional[Tensor] = None,
        text_self_attention_masks: Optional[Tensor] = None,
        text_position_ids: Optional[Tensor] = None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
            vision_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
            vision_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
                - 0 for pixel features that are real (i.e. **not masked**),
                - 1 for pixel features that are padding (i.e. **masked**).
                [What are attention masks?](../glossary#attention-mask)
            vision_position_embedding (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Position embeddings that are added to the queries and keys in each self-attention layer.
            spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
                Spatial shapes of each feature map.
            level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`):
                Starting index of each feature map.
            valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
                Ratio of valid area in each feature level.
            text_features (`torch.FloatTensor` of shape `(batch_size, text_seq_len, hidden_size)`):
                Flattened text features that are passed to the encoder.
            text_attention_mask (`torch.Tensor` of shape `(batch_size, text_seq_len)`, *optional*):
                Mask to avoid performing attention on padding text features. Mask values selected in `[0, 1]`:
                - 0 for text features that are real (i.e. **not masked**),
                - 1 for text features that are padding (i.e. **masked**).
                [What are attention masks?](../glossary#attention-mask)
            text_position_embedding (`torch.FloatTensor` of shape `(batch_size, text_seq_len)`):
                Position embeddings that are added to the queries and keys in each self-attention layer.
            text_self_attention_masks (`torch.BoolTensor` of shape `(batch_size, text_seq_len, text_seq_len)`):
                Masks to avoid performing attention between padding text features. Mask values selected in `[0, 1]`:
                - 1 for text features that are real (i.e. **not masked**),
                - 0 for text features that are padding (i.e. **masked**).
            text_position_ids (`torch.LongTensor` of shape `(batch_size, num_queries)`):
                Position ids for text features.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=vision_features.device)

        encoder_vision_states = () if output_hidden_states else None
        encoder_text_states = () if output_hidden_states else None
        all_attns = () if output_attentions else None
        all_attn_fused_text = () if output_attentions else None
        all_attn_fused_vision = () if output_attentions else None
        all_attn_enhanced_text = () if output_attentions else None
        all_attn_deformable = () if output_attentions else None
        for i, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_vision_states += (vision_features,)
                encoder_text_states += (text_features,)

            (vision_features, text_features), attentions = encoder_layer(
                vision_features=vision_features,
                vision_position_embedding=vision_position_embedding,
                spatial_shapes=spatial_shapes,
                level_start_index=level_start_index,
                key_padding_mask=vision_attention_mask,
                reference_points=reference_points,
                text_features=text_features,
                text_attention_mask=text_attention_mask,
                text_position_embedding=text_position_embedding,
                text_self_attention_masks=text_self_attention_masks,
                text_position_ids=text_position_ids,
            )

            if output_attentions:
                all_attn_fused_vision += (attentions[0],)
                all_attn_fused_text += (attentions[1],)
                all_attn_enhanced_text += (attentions[2],)
                all_attn_deformable += (attentions[3],)

        if output_hidden_states:
            encoder_vision_states += (vision_features,)
            encoder_text_states += (text_features,)

        if output_attentions:
            all_attns = (all_attn_fused_vision, all_attn_fused_text, all_attn_enhanced_text, all_attn_deformable)

        if not return_dict:
            enc_outputs = [vision_features, text_features, encoder_vision_states, encoder_text_states, all_attns]
            return tuple(v for v in enc_outputs if v is not None)
        return GroundingDinoEncoderOutput(
            last_hidden_state_vision=vision_features,
            last_hidden_state_text=text_features,
            vision_hidden_states=encoder_vision_states,
            text_hidden_states=encoder_text_states,
            attentions=all_attns,
        )


class GroundingDinoDecoder(GroundingDinoPreTrainedModel):
    """
    Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`GroundingDinoDecoderLayer`].

    The decoder updates the query embeddings through multiple self-attention and cross-attention layers.

    Some tweaks for Grounding DINO:

    - `position_embeddings`, `reference_points`, `spatial_shapes` and `valid_ratios` are added to the forward pass.
    - it also returns a stack of intermediate outputs and reference points from all decoding layers.

    Args:
        config: GroundingDinoConfig
    """

    def __init__(self, config: GroundingDinoConfig):
        super().__init__(config)

        self.dropout = config.dropout
        self.layer_norm = nn.LayerNorm(config.d_model, config.layer_norm_eps)
        self.layers = nn.ModuleList([GroundingDinoDecoderLayer(config) for _ in range(config.decoder_layers)])
        self.reference_points_head = GroundingDinoMLPPredictionHead(
            config.query_dim // 2 * config.d_model, config.d_model, config.d_model, 2
        )
        self.gradient_checkpointing = False

        # hack implementation for iterative bounding box refinement as in two-stage Deformable DETR
        self.bbox_embed = None
        self.class_embed = None
        self.query_scale = None

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        inputs_embeds,
        vision_encoder_hidden_states,
        vision_encoder_attention_mask=None,
        text_encoder_hidden_states=None,
        text_encoder_attention_mask=None,
        reference_points=None,
        spatial_shapes=None,
        level_start_index=None,
        valid_ratios=None,
        self_attn_mask=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
                The query embeddings that are passed into the decoder.
            vision_encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Last hidden state from encoder related to vision feature map.
            vision_encoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
                - 1 for pixel features that are real (i.e. **not masked**),
                - 0 for pixel features that are padding (i.e. **masked**).
            text_encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, text_seq_len, hidden_size)`):
                Last hidden state from encoder related to text features.
            text_encoder_attention_mask (`torch.Tensor` of shape `(batch_size, text_seq_len)`, *optional*):
                Mask to avoid performing attention on padding text features. Mask values selected in `[0, 1]`:
                - 0 for text features that are real (i.e. **not masked**),
                - 1 for text features that are padding (i.e. **masked**).
            reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)` is `as_two_stage` else `(batch_size, num_queries, 2)` or , *optional*):
                Reference point in range `[0, 1]`, top-left (0,0), bottom-right (1, 1), including padding area.
            spatial_shapes (`torch.FloatTensor` of shape `(num_feature_levels, 2)`):
                Spatial shapes of the feature maps.
            level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`, *optional*):
                Indexes for the start of each feature level. In range `[0, sequence_length]`.
            valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`, *optional*):
                Ratio of valid area in each feature level.
            self_attn_mask (`torch.BoolTensor` of shape `(batch_size, text_seq_len)`):
                Masks to avoid performing self-attention between vision hidden state. Mask values selected in `[0, 1]`:
                - 1 for queries that are real (i.e. **not masked**),
                - 0 for queries that are padding (i.e. **masked**).
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if inputs_embeds is not None:
            hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_attns = () if output_attentions else None
        all_cross_attns_vision = () if (output_attentions and vision_encoder_hidden_states is not None) else None
        all_cross_attns_text = () if (output_attentions and text_encoder_hidden_states is not None) else None
        intermediate = ()
        intermediate_reference_points = ()

        if text_encoder_attention_mask is not None:
            dtype = text_encoder_hidden_states.dtype

            text_encoder_attention_mask = text_encoder_attention_mask[:, None, None, :]
            text_encoder_attention_mask = text_encoder_attention_mask.repeat(
                1, self.config.decoder_attention_heads, self.config.num_queries, 1
            )
            text_encoder_attention_mask = text_encoder_attention_mask.to(dtype=dtype)
            text_encoder_attention_mask = text_encoder_attention_mask * torch.finfo(dtype).min

        for idx, decoder_layer in enumerate(self.layers):
            num_coordinates = reference_points.shape[-1]
            if num_coordinates == 4:
                reference_points_input = (
                    reference_points[:, :, None] * torch.cat([valid_ratios, valid_ratios], -1)[:, None]
                )
            elif num_coordinates == 2:
                reference_points_input = reference_points[:, :, None] * valid_ratios[:, None]
            else:
                raise ValueError("Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
            query_pos = get_sine_pos_embed(reference_points_input[:, :, 0, :], num_pos_feats=self.config.d_model // 2)
            query_pos = self.reference_points_head(query_pos)

            # In original implementation they apply layer norm before outputting intermediate hidden states
            # Though that's not through between layers so the layers use as input the output of the previous layer
            # withtout layer norm
            if output_hidden_states:
                all_hidden_states += (self.layer_norm(hidden_states),)

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
                    query_pos,
                    reference_points_input,
                    spatial_shapes,
                    level_start_index,
                    vision_encoder_hidden_states,
                    vision_encoder_attention_mask,
                    text_encoder_hidden_states,
                    text_encoder_attention_mask,
                    self_attn_mask,
                    None,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states=hidden_states,
                    position_embeddings=query_pos,
                    reference_points=reference_points_input,
                    spatial_shapes=spatial_shapes,
                    level_start_index=level_start_index,
                    vision_encoder_hidden_states=vision_encoder_hidden_states,
                    vision_encoder_attention_mask=vision_encoder_attention_mask,
                    text_encoder_hidden_states=text_encoder_hidden_states,
                    text_encoder_attention_mask=text_encoder_attention_mask,
                    self_attn_mask=self_attn_mask,
                    output_attentions=output_attentions,
                )

            hidden_states = layer_outputs[0]

            # hack implementation for iterative bounding box refinement
            if self.bbox_embed is not None:
                tmp = self.bbox_embed[idx](hidden_states)
                num_coordinates = reference_points.shape[-1]
                if num_coordinates == 4:
                    new_reference_points = tmp + torch.special.logit(reference_points, eps=1e-5)
                    new_reference_points = new_reference_points.sigmoid()
                elif num_coordinates == 2:
                    new_reference_points = tmp
                    new_reference_points[..., :2] = tmp[..., :2] + torch.special.logit(reference_points, eps=1e-5)
                    new_reference_points = new_reference_points.sigmoid()
                else:
                    raise ValueError(
                        f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}"
                    )
                reference_points = new_reference_points.detach()

            intermediate += (self.layer_norm(hidden_states),)
            intermediate_reference_points += (reference_points,)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

                if text_encoder_hidden_states is not None:
                    all_cross_attns_text += (layer_outputs[2],)

                if vision_encoder_hidden_states is not None:
                    all_cross_attns_vision += (layer_outputs[3],)

        # Keep batch_size as first dimension
        intermediate = torch.stack(intermediate, dim=1)
        intermediate_reference_points = torch.stack(intermediate_reference_points, dim=1)
        hidden_states = self.layer_norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        if output_attentions:
            all_attns += (all_self_attns, all_cross_attns_text, all_cross_attns_vision)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    intermediate,
                    intermediate_reference_points,
                    all_hidden_states,
                    all_attns,
                ]
                if v is not None
            )
        return GroundingDinoDecoderOutput(
            last_hidden_state=hidden_states,
            intermediate_hidden_states=intermediate,
            intermediate_reference_points=intermediate_reference_points,
            hidden_states=all_hidden_states,
            attentions=all_attns,
        )


# these correspond to [CLS], [SEP], . and ?
SPECIAL_TOKENS = [101, 102, 1012, 1029]


def generate_masks_with_special_tokens_and_transfer_map(input_ids: torch.LongTensor) -> Tuple[Tensor, Tensor]:
    """Generate attention mask between each pair of special tokens and positional ids.
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.
    Returns:
        `tuple(torch.Tensor)` comprising attention mask between each special tokens and position_ids:
        - **attention_mask** (`torch.BoolTensor` of shape `(batch_size, sequence_length, sequence_length)`)
        - **position_ids** (`torch.LongTensor` of shape `(batch_size, sequence_length)`)
    """
    batch_size, num_token = input_ids.shape
    # special_tokens_mask: batch_size, num_token. 1 for special tokens. 0 for normal tokens
    special_tokens_mask = torch.zeros((batch_size, num_token), device=input_ids.device).bool()
    for special_token in SPECIAL_TOKENS:
        special_tokens_mask |= input_ids == special_token

    # idxs: each row is a list of indices of special tokens
    idxs = torch.nonzero(special_tokens_mask)

    # generate attention mask and positional ids
    attention_mask = torch.eye(num_token, device=input_ids.device).bool().unsqueeze(0).repeat(batch_size, 1, 1)
    position_ids = torch.zeros((batch_size, num_token), device=input_ids.device)
    previous_col = 0
    for i in range(idxs.shape[0]):
        row, col = idxs[i]
        if (col == 0) or (col == num_token - 1):
            attention_mask[row, col, col] = True
            position_ids[row, col] = 0
        else:
            attention_mask[row, previous_col + 1 : col + 1, previous_col + 1 : col + 1] = True
            position_ids[row, previous_col + 1 : col + 1] = torch.arange(
                0, col - previous_col, device=input_ids.device
            )

        previous_col = col

    return attention_mask, position_ids.to(torch.long)


@add_start_docstrings(
    """
    The bare Grounding DINO Model (consisting of a backbone and encoder-decoder Transformer) outputting raw
    hidden-states without any specific head on top.
    """,
    GROUNDING_DINO_START_DOCSTRING,
)
class GroundingDinoModel(GroundingDinoPreTrainedModel):
    def __init__(self, config: GroundingDinoConfig):
        super().__init__(config)

        # Create backbone + positional encoding
        backbone = GroundingDinoConvEncoder(config)
        position_embeddings = build_position_encoding(config)
        self.backbone = GroundingDinoConvModel(backbone, position_embeddings)

        # Create input projection layers
        if config.num_feature_levels > 1:
            num_backbone_outs = len(backbone.intermediate_channel_sizes)
            input_proj_list = []
            for i in range(num_backbone_outs):
                in_channels = backbone.intermediate_channel_sizes[i]
                input_proj_list.append(
                    nn.Sequential(
                        nn.Conv2d(in_channels, config.d_model, kernel_size=1),
                        nn.GroupNorm(32, config.d_model),
                    )
                )
            for _ in range(config.num_feature_levels - num_backbone_outs):
                input_proj_list.append(
                    nn.Sequential(
                        nn.Conv2d(in_channels, config.d_model, kernel_size=3, stride=2, padding=1),
                        nn.GroupNorm(32, config.d_model),
                    )
                )
                in_channels = config.d_model
            self.input_proj_vision = nn.ModuleList(input_proj_list)
        else:
            self.input_proj_vision = nn.ModuleList(
                [
                    nn.Sequential(
                        nn.Conv2d(backbone.intermediate_channel_sizes[-1], config.d_model, kernel_size=1),
                        nn.GroupNorm(32, config.d_model),
                    )
                ]
            )

        # Create text backbone
        self.text_backbone = AutoModel.from_config(
            config.text_config, add_pooling_layer=False, attn_implementation=config._attn_implementation
        )
        self.text_projection = nn.Linear(config.text_config.hidden_size, config.d_model)

        if config.embedding_init_target or not config.two_stage:
            self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model)

        self.encoder = GroundingDinoEncoder(config)
        self.decoder = GroundingDinoDecoder(config)

        self.level_embed = nn.Parameter(torch.Tensor(config.num_feature_levels, config.d_model))

        if config.two_stage:
            self.enc_output = nn.Linear(config.d_model, config.d_model)
            self.enc_output_norm = nn.LayerNorm(config.d_model, config.layer_norm_eps)
            if (
                config.two_stage_bbox_embed_share
                and config.decoder_bbox_embed_share
                and self.decoder.bbox_embed is not None
            ):
                self.encoder_output_bbox_embed = self.decoder.bbox_embed
            else:
                self.encoder_output_bbox_embed = GroundingDinoMLPPredictionHead(
                    input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3
                )

            self.encoder_output_class_embed = GroundingDinoContrastiveEmbedding(config)
        else:
            self.reference_points = nn.Embedding(config.num_queries, 4)

        self.post_init()

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    def freeze_backbone(self):
        for name, param in self.backbone.conv_encoder.model.named_parameters():
            param.requires_grad_(False)

    def unfreeze_backbone(self):
        for name, param in self.backbone.conv_encoder.model.named_parameters():
            param.requires_grad_(True)

    def get_valid_ratio(self, mask):
        """Get the valid ratio of all feature maps."""

        _, height, width = mask.shape
        valid_height = torch.sum(mask[:, :, 0], 1)
        valid_width = torch.sum(mask[:, 0, :], 1)
        valid_ratio_heigth = valid_height.float() / height
        valid_ratio_width = valid_width.float() / width
        valid_ratio = torch.stack([valid_ratio_width, valid_ratio_heigth], -1)
        return valid_ratio

    def generate_encoder_output_proposals(self, enc_output, padding_mask, spatial_shapes):
        """Generate the encoder output proposals from encoded enc_output.

        Args:
            enc_output (`torch.Tensor[batch_size, sequence_length, hidden_size]`): Output of the encoder.
            padding_mask (`torch.Tensor[batch_size, sequence_length]`): Padding mask for `enc_output`.
            spatial_shapes (`torch.Tensor[num_feature_levels, 2]`): Spatial shapes of the feature maps.

        Returns:
            `tuple(torch.FloatTensor)`: A tuple of feature map and bbox prediction.
                - object_query (Tensor[batch_size, sequence_length, hidden_size]): Object query features. Later used to
                  directly predict a bounding box. (without the need of a decoder)
                - output_proposals (Tensor[batch_size, sequence_length, 4]): Normalized proposals, after an inverse
                  sigmoid.
        """
        batch_size = enc_output.shape[0]
        proposals = []
        current_position = 0
        for level, (height, width) in enumerate(spatial_shapes):
            mask_flatten_ = padding_mask[:, current_position : (current_position + height * width)]
            mask_flatten_ = mask_flatten_.view(batch_size, height, width, 1)
            valid_height = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
            valid_width = torch.sum(~mask_flatten_[:, 0, :, 0], 1)

            grid_y, grid_x = meshgrid(
                torch.linspace(0, height - 1, height, dtype=torch.float32, device=enc_output.device),
                torch.linspace(0, width - 1, width, dtype=torch.float32, device=enc_output.device),
                indexing="ij",
            )
            grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)

            scale = torch.cat([valid_width.unsqueeze(-1), valid_height.unsqueeze(-1)], 1).view(batch_size, 1, 1, 2)
            grid = (grid.unsqueeze(0).expand(batch_size, -1, -1, -1) + 0.5) / scale
            width_heigth = torch.ones_like(grid) * 0.05 * (2.0**level)
            proposal = torch.cat((grid, width_heigth), -1).view(batch_size, -1, 4)
            proposals.append(proposal)
            current_position += height * width

        output_proposals = torch.cat(proposals, 1)
        output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
        output_proposals = torch.log(output_proposals / (1 - output_proposals))  # inverse sigmoid
        output_proposals = output_proposals.masked_fill(padding_mask.unsqueeze(-1), float("inf"))
        output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf"))

        # assign each pixel as an object query
        object_query = enc_output
        object_query = object_query.masked_fill(padding_mask.unsqueeze(-1), float(0))
        object_query = object_query.masked_fill(~output_proposals_valid, float(0))
        object_query = self.enc_output_norm(self.enc_output(object_query))
        return object_query, output_proposals

    @add_start_docstrings_to_model_forward(GROUNDING_DINO_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=GroundingDinoModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values: Tensor,
        input_ids: Tensor,
        token_type_ids: Optional[Tensor] = None,
        attention_mask: Optional[Tensor] = None,
        pixel_mask: Optional[Tensor] = None,
        encoder_outputs=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Returns:

        Examples:

        ```python
        >>> from transformers import AutoProcessor, AutoModel
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)
        >>> text = "a cat."

        >>> processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-tiny")
        >>> model = AutoModel.from_pretrained("IDEA-Research/grounding-dino-tiny")

        >>> inputs = processor(images=image, text=text, return_tensors="pt")
        >>> outputs = model(**inputs)

        >>> last_hidden_states = outputs.last_hidden_state
        >>> list(last_hidden_states.shape)
        [1, 900, 256]
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        text_self_attention_masks, position_ids = generate_masks_with_special_tokens_and_transfer_map(input_ids)

        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)

        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        text_token_mask = attention_mask.bool()  # just to avoid renaming everywhere

        max_text_len = self.config.max_text_len
        if text_self_attention_masks.shape[1] > max_text_len:
            text_self_attention_masks = text_self_attention_masks[:, :max_text_len, :max_text_len]
            position_ids = position_ids[:, :max_text_len]
            input_ids = input_ids[:, :max_text_len]
            token_type_ids = token_type_ids[:, :max_text_len]
            text_token_mask = text_token_mask[:, :max_text_len]

        # Extract text features from text backbone
        text_outputs = self.text_backbone(
            input_ids, text_self_attention_masks, token_type_ids, position_ids, return_dict=return_dict
        )
        text_features = text_outputs.last_hidden_state if return_dict else text_outputs[0]
        text_features = self.text_projection(text_features)

        batch_size, num_channels, height, width = pixel_values.shape
        device = pixel_values.device

        if pixel_mask is None:
            pixel_mask = torch.ones(((batch_size, height, width)), dtype=torch.long, device=device)

        # Extract multi-scale feature maps of same resolution `config.d_model` (cf Figure 4 in paper)
        # First, sent pixel_values + pixel_mask through Backbone to obtain the features
        # which is a list of tuples
        vision_features, position_embeddings_list = self.backbone(pixel_values, pixel_mask)

        # Then, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
        feature_maps = []
        masks = []
        for level, (source, mask) in enumerate(vision_features):
            feature_maps.append(self.input_proj_vision[level](source))
            masks.append(mask)

        # Lowest resolution feature maps are obtained via 3x3 stride 2 convolutions on the final stage
        if self.config.num_feature_levels > len(feature_maps):
            _len_sources = len(feature_maps)
            for level in range(_len_sources, self.config.num_feature_levels):
                if level == _len_sources:
                    source = self.input_proj_vision[level](vision_features[-1][0])
                else:
                    source = self.input_proj_vision[level](feature_maps[-1])
                mask = nn.functional.interpolate(pixel_mask[None].float(), size=source.shape[-2:]).to(torch.bool)[0]
                pos_l = self.backbone.position_embedding(source, mask).to(source.dtype)
                feature_maps.append(source)
                masks.append(mask)
                position_embeddings_list.append(pos_l)

        # Create queries
        query_embeds = None
        if self.config.embedding_init_target or self.config.two_stage:
            query_embeds = self.query_position_embeddings.weight

        # Prepare encoder inputs (by flattening)
        source_flatten = []
        mask_flatten = []
        lvl_pos_embed_flatten = []
        spatial_shapes = []
        for level, (source, mask, pos_embed) in enumerate(zip(feature_maps, masks, position_embeddings_list)):
            batch_size, num_channels, height, width = source.shape
            spatial_shape = (height, width)
            spatial_shapes.append(spatial_shape)
            source = source.flatten(2).transpose(1, 2)
            mask = mask.flatten(1)
            pos_embed = pos_embed.flatten(2).transpose(1, 2)
            lvl_pos_embed = pos_embed + self.level_embed[level].view(1, 1, -1)
            lvl_pos_embed_flatten.append(lvl_pos_embed)
            source_flatten.append(source)
            mask_flatten.append(mask)
        source_flatten = torch.cat(source_flatten, 1)
        mask_flatten = torch.cat(mask_flatten, 1)
        lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
        spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=source_flatten.device)
        level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
        valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
        valid_ratios = valid_ratios.float()

        # Fourth, sent source_flatten + mask_flatten + lvl_pos_embed_flatten (backbone + proj layer output) through encoder
        # Also provide spatial_shapes, level_start_index and valid_ratios
        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                vision_features=source_flatten,
                vision_attention_mask=~mask_flatten,
                vision_position_embedding=lvl_pos_embed_flatten,
                spatial_shapes=spatial_shapes,
                level_start_index=level_start_index,
                valid_ratios=valid_ratios,
                text_features=text_features,
                text_attention_mask=~text_token_mask,
                text_position_embedding=None,
                text_self_attention_masks=~text_self_attention_masks,
                text_position_ids=position_ids,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a GroundingDinoEncoderOutput when return_dict=True
        elif return_dict and not isinstance(encoder_outputs, GroundingDinoEncoderOutput):
            encoder_outputs = GroundingDinoEncoderOutput(
                last_hidden_state_vision=encoder_outputs[0],
                last_hidden_state_text=encoder_outputs[1],
                vision_hidden_states=encoder_outputs[2] if output_hidden_states else None,
                text_hidden_states=encoder_outputs[3] if output_hidden_states else None,
                attentions=encoder_outputs[-1] if output_attentions else None,
            )

        # Fifth, prepare decoder inputs
        enc_outputs_class = None
        enc_outputs_coord_logits = None
        if self.config.two_stage:
            object_query_embedding, output_proposals = self.generate_encoder_output_proposals(
                encoder_outputs[0], ~mask_flatten, spatial_shapes
            )

            # hack implementation as in two-stage Deformable DETR
            # apply a detection head to each pixel (A.4 in paper)
            # linear projection for bounding box binary classification (i.e. foreground and background)
            enc_outputs_class = self.encoder_output_class_embed(
                object_query_embedding, encoder_outputs[1], text_token_mask
            )
            # 3-layer FFN to predict bounding boxes coordinates (bbox regression branch)
            delta_bbox = self.encoder_output_bbox_embed(object_query_embedding)
            enc_outputs_coord_logits = delta_bbox + output_proposals

            # only keep top scoring `config.num_queries` proposals
            topk = self.config.num_queries
            topk_logits = enc_outputs_class.max(-1)[0]
            topk_proposals = torch.topk(topk_logits, topk, dim=1)[1]
            topk_coords_logits = torch.gather(
                enc_outputs_coord_logits, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
            )

            topk_coords_logits = topk_coords_logits.detach()
            reference_points = topk_coords_logits.sigmoid()
            init_reference_points = reference_points
            if query_embeds is not None:
                target = query_embeds.unsqueeze(0).repeat(batch_size, 1, 1)
            else:
                target = torch.gather(
                    object_query_embedding, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model)
                ).detach()
        else:
            target = query_embeds.unsqueeze(0).repeat(batch_size, 1, 1)
            reference_points = self.reference_points.weight.unsqueeze(0).repeat(batch_size, 1, 1).sigmoid()
            init_reference_points = reference_points

        decoder_outputs = self.decoder(
            inputs_embeds=target,
            vision_encoder_hidden_states=encoder_outputs[0],
            vision_encoder_attention_mask=mask_flatten,
            text_encoder_hidden_states=encoder_outputs[1],
            text_encoder_attention_mask=~text_token_mask,
            reference_points=reference_points,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios,
            self_attn_mask=None,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            enc_outputs = tuple(value for value in [enc_outputs_class, enc_outputs_coord_logits] if value is not None)
            tuple_outputs = (
                (decoder_outputs[0], init_reference_points) + decoder_outputs[1:] + encoder_outputs + enc_outputs
            )

            return tuple_outputs

        return GroundingDinoModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            init_reference_points=init_reference_points,
            intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
            intermediate_reference_points=decoder_outputs.intermediate_reference_points,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            encoder_last_hidden_state_vision=encoder_outputs.last_hidden_state_vision,
            encoder_last_hidden_state_text=encoder_outputs.last_hidden_state_text,
            encoder_vision_hidden_states=encoder_outputs.vision_hidden_states,
            encoder_text_hidden_states=encoder_outputs.text_hidden_states,
            encoder_attentions=encoder_outputs.attentions,
            enc_outputs_class=enc_outputs_class,
            enc_outputs_coord_logits=enc_outputs_coord_logits,
        )


# Copied from transformers.models.detr.modeling_detr.DetrMLPPredictionHead
class GroundingDinoMLPPredictionHead(nn.Module):
    """
    Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
    height and width of a bounding box w.r.t. an image.

    Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py

    """

    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x


# Copied from transformers.models.detr.modeling_detr._upcast
def _upcast(t: Tensor) -> Tensor:
    # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
    if t.is_floating_point():
        return t if t.dtype in (torch.float32, torch.float64) else t.float()
    else:
        return t if t.dtype in (torch.int32, torch.int64) else t.int()


# Copied from transformers.models.detr.modeling_detr.box_area
def box_area(boxes: Tensor) -> Tensor:
    """
    Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates.

    Args:
        boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`):
            Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1
            < x2` and `0 <= y1 < y2`.

    Returns:
        `torch.FloatTensor`: a tensor containing the area for each box.
    """
    boxes = _upcast(boxes)
    return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])


# Copied from transformers.models.detr.modeling_detr.box_iou
def box_iou(boxes1, boxes2):
    area1 = box_area(boxes1)
    area2 = box_area(boxes2)

    left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2])  # [N,M,2]
    right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])  # [N,M,2]

    width_height = (right_bottom - left_top).clamp(min=0)  # [N,M,2]
    inter = width_height[:, :, 0] * width_height[:, :, 1]  # [N,M]

    union = area1[:, None] + area2 - inter

    iou = inter / union
    return iou, union


# Copied from transformers.models.detr.modeling_detr.generalized_box_iou
def generalized_box_iou(boxes1, boxes2):
    """
    Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format.

    Returns:
        `torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2)
    """
    # degenerate boxes gives inf / nan results
    # so do an early check
    if not (boxes1[:, 2:] >= boxes1[:, :2]).all():
        raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}")
    if not (boxes2[:, 2:] >= boxes2[:, :2]).all():
        raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}")
    iou, union = box_iou(boxes1, boxes2)

    top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2])
    bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])

    width_height = (bottom_right - top_left).clamp(min=0)  # [N,M,2]
    area = width_height[:, :, 0] * width_height[:, :, 1]

    return iou - (area - union) / area


# Copied from transformers.models.detr.modeling_detr._max_by_axis
def _max_by_axis(the_list):
    # type: (List[List[int]]) -> List[int]
    maxes = the_list[0]
    for sublist in the_list[1:]:
        for index, item in enumerate(sublist):
            maxes[index] = max(maxes[index], item)
    return maxes


# Copied from transformers.models.detr.modeling_detr.dice_loss
def dice_loss(inputs, targets, num_boxes):
    """
    Compute the DICE loss, similar to generalized IOU for masks

    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs (0 for the negative class and 1 for the positive
                 class).
    """
    inputs = inputs.sigmoid()
    inputs = inputs.flatten(1)
    numerator = 2 * (inputs * targets).sum(1)
    denominator = inputs.sum(-1) + targets.sum(-1)
    loss = 1 - (numerator + 1) / (denominator + 1)
    return loss.sum() / num_boxes


# Copied from transformers.models.detr.modeling_detr.sigmoid_focal_loss
def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2):
    """
    Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.

    Args:
        inputs (`torch.FloatTensor` of arbitrary shape):
            The predictions for each example.
        targets (`torch.FloatTensor` with the same shape as `inputs`)
            A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class
            and 1 for the positive class).
        alpha (`float`, *optional*, defaults to `0.25`):
            Optional weighting factor in the range (0,1) to balance positive vs. negative examples.
        gamma (`int`, *optional*, defaults to `2`):
            Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples.

    Returns:
        Loss tensor
    """
    prob = inputs.sigmoid()
    ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
    # add modulating factor
    p_t = prob * targets + (1 - prob) * (1 - targets)
    loss = ce_loss * ((1 - p_t) ** gamma)

    if alpha >= 0:
        alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
        loss = alpha_t * loss

    return loss.mean(1).sum() / num_boxes


# Copied from transformers.models.detr.modeling_detr.NestedTensor
class NestedTensor(object):
    def __init__(self, tensors, mask: Optional[Tensor]):
        self.tensors = tensors
        self.mask = mask

    def to(self, device):
        cast_tensor = self.tensors.to(device)
        mask = self.mask
        if mask is not None:
            cast_mask = mask.to(device)
        else:
            cast_mask = None
        return NestedTensor(cast_tensor, cast_mask)

    def decompose(self):
        return self.tensors, self.mask

    def __repr__(self):
        return str(self.tensors)


# Copied from transformers.models.detr.modeling_detr.nested_tensor_from_tensor_list
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
    if tensor_list[0].ndim == 3:
        max_size = _max_by_axis([list(img.shape) for img in tensor_list])
        batch_shape = [len(tensor_list)] + max_size
        batch_size, num_channels, height, width = batch_shape
        dtype = tensor_list[0].dtype
        device = tensor_list[0].device
        tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
        mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device)
        for img, pad_img, m in zip(tensor_list, tensor, mask):
            pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
            m[: img.shape[1], : img.shape[2]] = False
    else:
        raise ValueError("Only 3-dimensional tensors are supported")
    return NestedTensor(tensor, mask)


# Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrHungarianMatcher with DeformableDetr->GroundingDino
class GroundingDinoHungarianMatcher(nn.Module):
    """
    This class computes an assignment between the targets and the predictions of the network.

    For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more
    predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are
    un-matched (and thus treated as non-objects).

    Args:
        class_cost:
            The relative weight of the classification error in the matching cost.
        bbox_cost:
            The relative weight of the L1 error of the bounding box coordinates in the matching cost.
        giou_cost:
            The relative weight of the giou loss of the bounding box in the matching cost.
    """

    def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1):
        super().__init__()
        requires_backends(self, ["scipy"])

        self.class_cost = class_cost
        self.bbox_cost = bbox_cost
        self.giou_cost = giou_cost
        if class_cost == 0 and bbox_cost == 0 and giou_cost == 0:
            raise ValueError("All costs of the Matcher can't be 0")

    @torch.no_grad()
    def forward(self, outputs, targets):
        """
        Args:
            outputs (`dict`):
                A dictionary that contains at least these entries:
                * "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
                * "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates.
            targets (`List[dict]`):
                A list of targets (len(targets) = batch_size), where each target is a dict containing:
                * "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of
                  ground-truth
                 objects in the target) containing the class labels
                * "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates.

        Returns:
            `List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where:
            - index_i is the indices of the selected predictions (in order)
            - index_j is the indices of the corresponding selected targets (in order)
            For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
        """
        batch_size, num_queries = outputs["logits"].shape[:2]

        # We flatten to compute the cost matrices in a batch
        out_prob = outputs["logits"].flatten(0, 1).sigmoid()  # [batch_size * num_queries, num_classes]
        out_bbox = outputs["pred_boxes"].flatten(0, 1)  # [batch_size * num_queries, 4]

        # Also concat the target labels and boxes
        target_ids = torch.cat([v["class_labels"] for v in targets])
        target_bbox = torch.cat([v["boxes"] for v in targets])

        # Compute the classification cost.
        alpha = 0.25
        gamma = 2.0
        neg_cost_class = (1 - alpha) * (out_prob**gamma) * (-(1 - out_prob + 1e-8).log())
        pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log())
        class_cost = pos_cost_class[:, target_ids] - neg_cost_class[:, target_ids]

        # Compute the L1 cost between boxes
        bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)

        # Compute the giou cost between boxes
        giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))

        # Final cost matrix
        cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
        cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu()

        sizes = [len(v["boxes"]) for v in targets]
        indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))]
        return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]


# Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss with DeformableDetr->GroundingDino
class GroundingDinoLoss(nn.Module):
    """
    This class computes the losses for `GroundingDinoForObjectDetection`. The process happens in two steps: 1) we
    compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of
    matched ground-truth / prediction (supervise class and box).

    Args:
        matcher (`GroundingDinoHungarianMatcher`):
            Module able to compute a matching between targets and proposals.
        num_classes (`int`):
            Number of object categories, omitting the special no-object category.
        focal_alpha (`float`):
            Alpha parameter in focal loss.
        losses (`List[str]`):
            List of all the losses to be applied. See `get_loss` for a list of all available losses.
    """

    def __init__(self, matcher, num_classes, focal_alpha, losses):
        super().__init__()
        self.matcher = matcher
        self.num_classes = num_classes
        self.focal_alpha = focal_alpha
        self.losses = losses

    # removed logging parameter, which was part of the original implementation
    def loss_labels(self, outputs, targets, indices, num_boxes):
        """
        Classification loss (Binary focal loss) targets dicts must contain the key "class_labels" containing a tensor
        of dim [nb_target_boxes]
        """
        if "logits" not in outputs:
            raise KeyError("No logits were found in the outputs")
        source_logits = outputs["logits"]

        idx = self._get_source_permutation_idx(indices)
        target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)])
        target_classes = torch.full(
            source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device
        )
        target_classes[idx] = target_classes_o

        target_classes_onehot = torch.zeros(
            [source_logits.shape[0], source_logits.shape[1], source_logits.shape[2] + 1],
            dtype=source_logits.dtype,
            layout=source_logits.layout,
            device=source_logits.device,
        )
        target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)

        target_classes_onehot = target_classes_onehot[:, :, :-1]
        loss_ce = (
            sigmoid_focal_loss(source_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2)
            * source_logits.shape[1]
        )
        losses = {"loss_ce": loss_ce}

        return losses

    @torch.no_grad()
    # Copied from transformers.models.detr.modeling_detr.DetrLoss.loss_cardinality
    def loss_cardinality(self, outputs, targets, indices, num_boxes):
        """
        Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes.

        This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients.
        """
        logits = outputs["logits"]
        device = logits.device
        target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
        # Count the number of predictions that are NOT "no-object" (which is the last class)
        card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1)
        card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float())
        losses = {"cardinality_error": card_err}
        return losses

    # Copied from transformers.models.detr.modeling_detr.DetrLoss.loss_boxes
    def loss_boxes(self, outputs, targets, indices, num_boxes):
        """
        Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss.

        Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes
        are expected in format (center_x, center_y, w, h), normalized by the image size.
        """
        if "pred_boxes" not in outputs:
            raise KeyError("No predicted boxes found in outputs")
        idx = self._get_source_permutation_idx(indices)
        source_boxes = outputs["pred_boxes"][idx]
        target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)

        loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none")

        losses = {}
        losses["loss_bbox"] = loss_bbox.sum() / num_boxes

        loss_giou = 1 - torch.diag(
            generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes))
        )
        losses["loss_giou"] = loss_giou.sum() / num_boxes
        return losses

    # Copied from transformers.models.detr.modeling_detr.DetrLoss._get_source_permutation_idx
    def _get_source_permutation_idx(self, indices):
        # permute predictions following indices
        batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)])
        source_idx = torch.cat([source for (source, _) in indices])
        return batch_idx, source_idx

    # Copied from transformers.models.detr.modeling_detr.DetrLoss._get_target_permutation_idx
    def _get_target_permutation_idx(self, indices):
        # permute targets following indices
        batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)])
        target_idx = torch.cat([target for (_, target) in indices])
        return batch_idx, target_idx

    def get_loss(self, loss, outputs, targets, indices, num_boxes):
        loss_map = {
            "labels": self.loss_labels,
            "cardinality": self.loss_cardinality,
            "boxes": self.loss_boxes,
        }
        if loss not in loss_map:
            raise ValueError(f"Loss {loss} not supported")
        return loss_map[loss](outputs, targets, indices, num_boxes)

    def forward(self, outputs, targets):
        """
        This performs the loss computation.

        Args:
             outputs (`dict`, *optional*):
                Dictionary of tensors, see the output specification of the model for the format.
             targets (`List[dict]`, *optional*):
                List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the
                losses applied, see each loss' doc.
        """
        outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs" and k != "enc_outputs"}

        # Retrieve the matching between the outputs of the last layer and the targets
        indices = self.matcher(outputs_without_aux, targets)

        # Compute the average number of target boxes accross all nodes, for normalization purposes
        num_boxes = sum(len(t["class_labels"]) for t in targets)
        num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
        world_size = 1
        if is_accelerate_available():
            if PartialState._shared_state != {}:
                num_boxes = reduce(num_boxes)
                world_size = PartialState().num_processes
        num_boxes = torch.clamp(num_boxes / world_size, min=1).item()

        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if "auxiliary_outputs" in outputs:
            for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]):
                indices = self.matcher(auxiliary_outputs, targets)
                for loss in self.losses:
                    l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes)
                    l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
                    losses.update(l_dict)

        if "enc_outputs" in outputs:
            enc_outputs = outputs["enc_outputs"]
            bin_targets = copy.deepcopy(targets)
            for bt in bin_targets:
                bt["class_labels"] = torch.zeros_like(bt["class_labels"])
            indices = self.matcher(enc_outputs, bin_targets)
            for loss in self.losses:
                l_dict = self.get_loss(loss, enc_outputs, bin_targets, indices, num_boxes)
                l_dict = {k + "_enc": v for k, v in l_dict.items()}
                losses.update(l_dict)

        return losses


@add_start_docstrings(
    """
    Grounding DINO Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on top,
    for tasks such as COCO detection.
    """,
    GROUNDING_DINO_START_DOCSTRING,
)
class GroundingDinoForObjectDetection(GroundingDinoPreTrainedModel):
    # When using clones, all layers > 0 will be clones, but layer 0 *is* required
    # the bbox_embed in the decoder are all clones though
    _tied_weights_keys = [r"bbox_embed\.[1-9]\d*", r"model\.decoder\.bbox_embed\.[0-9]\d*"]

    def __init__(self, config: GroundingDinoConfig):
        super().__init__(config)

        self.model = GroundingDinoModel(config)
        _class_embed = GroundingDinoContrastiveEmbedding(config)

        if config.decoder_bbox_embed_share:
            _bbox_embed = GroundingDinoMLPPredictionHead(
                input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3
            )
            self.bbox_embed = nn.ModuleList([_bbox_embed for _ in range(config.decoder_layers)])
        else:
            model_list = []
            for _ in range(config.decoder_layers):
                _bbox_embed = GroundingDinoMLPPredictionHead(
                    input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3
                )
                model_list.append(_bbox_embed)
            self.bbox_embed = nn.ModuleList(model_list)
        self.class_embed = nn.ModuleList([_class_embed for _ in range(config.decoder_layers)])
        # hack for box-refinement
        self.model.decoder.bbox_embed = self.bbox_embed
        # hack implementation for two-stage
        self.model.decoder.class_embed = self.class_embed

        # Initialize weights and apply final processing
        self.post_init()

    # taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py
    @torch.jit.unused
    def _set_aux_loss(self, outputs_class, outputs_coord):
        # this is a workaround to make torchscript happy, as torchscript
        # doesn't support dictionary with non-homogeneous values, such
        # as a dict having both a Tensor and a list.
        return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]

    @add_start_docstrings_to_model_forward(GROUNDING_DINO_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=GroundingDinoObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values: torch.FloatTensor,
        input_ids: torch.LongTensor,
        token_type_ids: torch.LongTensor = None,
        attention_mask: torch.LongTensor = None,
        pixel_mask: Optional[torch.BoolTensor] = None,
        encoder_outputs: Optional[Union[GroundingDinoEncoderOutput, Tuple]] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        labels: List[Dict[str, Union[torch.LongTensor, torch.FloatTensor]]] = None,
    ):
        r"""
        labels (`List[Dict]` of len `(batch_size,)`, *optional*):
            Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
            following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
            respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
            in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoProcessor, GroundingDinoForObjectDetection
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)
        >>> text = "a cat."

        >>> processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-tiny")
        >>> model = GroundingDinoForObjectDetection.from_pretrained("IDEA-Research/grounding-dino-tiny")

        >>> inputs = processor(images=image, text=text, return_tensors="pt")
        >>> outputs = model(**inputs)

        >>> # convert outputs (bounding boxes and class logits) to COCO API
        >>> target_sizes = torch.tensor([image.size[::-1]])
        >>> results = processor.image_processor.post_process_object_detection(
        ...     outputs, threshold=0.35, target_sizes=target_sizes
        ... )[0]
        >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
        ...     box = [round(i, 1) for i in box.tolist()]
        ...     print(f"Detected {label.item()} with confidence " f"{round(score.item(), 2)} at location {box}")
        Detected 1 with confidence 0.45 at location [344.8, 23.2, 637.4, 373.8]
        Detected 1 with confidence 0.41 at location [11.9, 51.6, 316.6, 472.9]
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)

        # First, sent images through Grounding DINO base model to obtain encoder + decoder outputs
        outputs = self.model(
            pixel_values=pixel_values,
            input_ids=input_ids,
            token_type_ids=token_type_ids,
            attention_mask=attention_mask,
            pixel_mask=pixel_mask,
            encoder_outputs=encoder_outputs,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        idx = 5 + (1 if output_attentions else 0) + (1 if output_hidden_states else 0)
        enc_text_hidden_state = outputs.encoder_last_hidden_state_text if return_dict else outputs[idx]
        hidden_states = outputs.intermediate_hidden_states if return_dict else outputs[2]
        init_reference_points = outputs.init_reference_points if return_dict else outputs[1]
        inter_references_points = outputs.intermediate_reference_points if return_dict else outputs[3]

        # class logits + predicted bounding boxes
        outputs_classes = []
        outputs_coords = []

        # hidden_states are of shape (batch_size, num_stages, height, width)
        # predict class and bounding box deltas for each stage
        num_levels = hidden_states.shape[1]
        for level in range(num_levels):
            if level == 0:
                reference = init_reference_points
            else:
                reference = inter_references_points[:, level - 1]
            reference = torch.special.logit(reference, eps=1e-5)
            outputs_class = self.class_embed[level](
                vision_hidden_state=hidden_states[:, level],
                text_hidden_state=enc_text_hidden_state,
                text_token_mask=attention_mask.bool(),
            )
            delta_bbox = self.bbox_embed[level](hidden_states[:, level])

            reference_coordinates = reference.shape[-1]
            if reference_coordinates == 4:
                outputs_coord_logits = delta_bbox + reference
            elif reference_coordinates == 2:
                delta_bbox[..., :2] += reference
                outputs_coord_logits = delta_bbox
            else:
                raise ValueError(f"reference.shape[-1] should be 4 or 2, but got {reference.shape[-1]}")
            outputs_coord = outputs_coord_logits.sigmoid()
            outputs_classes.append(outputs_class)
            outputs_coords.append(outputs_coord)
        outputs_class = torch.stack(outputs_classes)
        outputs_coord = torch.stack(outputs_coords)

        logits = outputs_class[-1]
        pred_boxes = outputs_coord[-1]

        loss, loss_dict, auxiliary_outputs = None, None, None
        if labels is not None:
            # First: create the matcher
            matcher = GroundingDinoHungarianMatcher(
                class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost
            )
            # Second: create the criterion
            losses = ["labels", "boxes", "cardinality"]
            criterion = GroundingDinoLoss(
                matcher=matcher,
                num_classes=self.config.num_labels,
                focal_alpha=self.config.focal_alpha,
                losses=losses,
            )
            criterion.to(self.device)
            # Third: compute the losses, based on outputs and labels
            outputs_loss = {}
            outputs_loss["logits"] = logits
            outputs_loss["pred_boxes"] = pred_boxes
            if self.config.auxiliary_loss:
                auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord)
                outputs_loss["auxiliary_outputs"] = auxiliary_outputs
            if self.config.two_stage:
                enc_outputs_coord = outputs[-1].sigmoid()
                outputs_loss["enc_outputs"] = {"logits": outputs[-2], "pred_boxes": enc_outputs_coord}

            loss_dict = criterion(outputs_loss, labels)
            # Fourth: compute total loss, as a weighted sum of the various losses
            weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient}
            weight_dict["loss_giou"] = self.config.giou_loss_coefficient
            if self.config.auxiliary_loss:
                aux_weight_dict = {}
                for i in range(self.config.decoder_layers - 1):
                    aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
                weight_dict.update(aux_weight_dict)
            loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)

        if not return_dict:
            if auxiliary_outputs is not None:
                output = (logits, pred_boxes) + auxiliary_outputs + outputs
            else:
                output = (logits, pred_boxes) + outputs
            tuple_outputs = ((loss, loss_dict) + output) if loss is not None else output

            return tuple_outputs

        dict_outputs = GroundingDinoObjectDetectionOutput(
            loss=loss,
            loss_dict=loss_dict,
            logits=logits,
            pred_boxes=pred_boxes,
            last_hidden_state=outputs.last_hidden_state,
            auxiliary_outputs=auxiliary_outputs,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            encoder_last_hidden_state_vision=outputs.encoder_last_hidden_state_vision,
            encoder_last_hidden_state_text=outputs.encoder_last_hidden_state_text,
            encoder_vision_hidden_states=outputs.encoder_vision_hidden_states,
            encoder_text_hidden_states=outputs.encoder_text_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
            intermediate_hidden_states=outputs.intermediate_hidden_states,
            intermediate_reference_points=outputs.intermediate_reference_points,
            init_reference_points=outputs.init_reference_points,
            enc_outputs_class=outputs.enc_outputs_class,
            enc_outputs_coord_logits=outputs.enc_outputs_coord_logits,
        )

        return dict_outputs