Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image, ImageDraw, ImageFont
|
3 |
+
from transformers import GroundingDinoProcessor
|
4 |
+
from modeling_grounding_dino import GroundingDinoForObjectDetection
|
5 |
+
|
6 |
+
from PIL import Image, ImageDraw, ImageFont
|
7 |
+
from itertools import cycle
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
import spaces
|
12 |
+
|
13 |
+
# Load model and processor
|
14 |
+
model_id = "fushh7/llmdet_swin_large_hf"
|
15 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
|
17 |
+
print(f"[INFO] Using device: {DEVICE}")
|
18 |
+
print(f"[INFO] Loading model from {model_id}...")
|
19 |
+
|
20 |
+
processor = GroundingDinoProcessor.from_pretrained(model_id)
|
21 |
+
model = GroundingDinoForObjectDetection.from_pretrained(model_id).to(DEVICE)
|
22 |
+
model.eval();
|
23 |
+
|
24 |
+
print("[INFO] Model loaded successfully.")
|
25 |
+
|
26 |
+
# Pre-defined palette (extend or tweak as you like)
|
27 |
+
BOX_COLORS = [
|
28 |
+
"deepskyblue", "red", "lime", "dodgerblue",
|
29 |
+
"cyan", "magenta", "yellow",
|
30 |
+
"orange", "chartreuse"
|
31 |
+
]
|
32 |
+
|
33 |
+
def draw_boxes(image, boxes, labels, scores, colors=BOX_COLORS, font_path="arial.ttf", font_size=16):
|
34 |
+
"""
|
35 |
+
Draw bounding boxes and labels on a PIL Image.
|
36 |
+
|
37 |
+
:param image: PIL Image object
|
38 |
+
:param boxes: Iterable of [x_min, y_min, x_max, y_max]
|
39 |
+
:param labels: Iterable of label strings
|
40 |
+
:param scores: Iterable of scalar confidences (0-1)
|
41 |
+
:param colors: List/tuple of colour names or RGB tuples
|
42 |
+
:param font_path: Path to a TTF font for labels
|
43 |
+
:param font_size: Int size of font to use, default 16
|
44 |
+
:return: PIL Image with drawn boxes
|
45 |
+
"""
|
46 |
+
# Ensure we can iterate colours indefinitely
|
47 |
+
colour_cycle = cycle(colors)
|
48 |
+
draw = ImageDraw.Draw(image)
|
49 |
+
|
50 |
+
# Pick a font (fallback to default if missing)
|
51 |
+
try:
|
52 |
+
font = ImageFont.truetype(font_path, size=font_size)
|
53 |
+
except IOError:
|
54 |
+
font = ImageFont.load_default(size=font_size)
|
55 |
+
|
56 |
+
# Assign a consistent colour per label (optional)
|
57 |
+
label_to_colour = {}
|
58 |
+
|
59 |
+
for box, label, score in zip(boxes, labels, scores):
|
60 |
+
# Reuse colour if label seen before, else take next from cycle
|
61 |
+
colour = label_to_colour.setdefault(label, next(colour_cycle))
|
62 |
+
|
63 |
+
x_min, y_min, x_max, y_max = map(int, box)
|
64 |
+
|
65 |
+
# Draw rectangle
|
66 |
+
draw.rectangle([x_min, y_min, x_max, y_max], outline=colour, width=2)
|
67 |
+
|
68 |
+
# Compose text
|
69 |
+
text = f"{label} ({score:.3f})"
|
70 |
+
text_size = draw.textbbox((0, 0), text, font=font)[2:]
|
71 |
+
|
72 |
+
# Draw text background for legibility
|
73 |
+
bg_coords = [x_min, y_min - text_size[1] - 4,
|
74 |
+
x_min + text_size[0] + 4, y_min]
|
75 |
+
draw.rectangle(bg_coords, fill=colour)
|
76 |
+
|
77 |
+
# Draw text
|
78 |
+
draw.text((x_min + 2, y_min - text_size[1] - 2),
|
79 |
+
text, fill="black", font=font)
|
80 |
+
|
81 |
+
return image
|
82 |
+
|
83 |
+
def resize_image_max_dimension(image, max_size=1024):
|
84 |
+
"""
|
85 |
+
Resize an image so that the longest side is at most max_size pixels,
|
86 |
+
while maintaining the aspect ratio.
|
87 |
+
|
88 |
+
:param image: PIL Image object
|
89 |
+
:param max_size: Maximum dimension in pixels (default: 1024)
|
90 |
+
:return: PIL Image object (resized)
|
91 |
+
"""
|
92 |
+
width, height = image.size
|
93 |
+
|
94 |
+
# Check if resizing is needed
|
95 |
+
if max(width, height) <= max_size:
|
96 |
+
return image
|
97 |
+
|
98 |
+
# Calculate new dimensions maintaining aspect ratio
|
99 |
+
ratio = max_size / max(width, height)
|
100 |
+
new_width = int(width * ratio)
|
101 |
+
new_height = int(height * ratio)
|
102 |
+
|
103 |
+
# Resize the image using high-quality resampling
|
104 |
+
return image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
105 |
+
|
106 |
+
@spaces.GPU(duration=120)
|
107 |
+
def detect_and_draw(
|
108 |
+
img: Image.Image,
|
109 |
+
text_query: str,
|
110 |
+
box_threshold: float = 0.4,
|
111 |
+
text_threshold: float = 0.3
|
112 |
+
) -> Image.Image:
|
113 |
+
"""
|
114 |
+
Detect objects described in `text_query`, draw boxes, return the image.
|
115 |
+
Note: `text_query` must be lowercase and each concept ends with a dot
|
116 |
+
(e.g. 'a cat. a remote control.')
|
117 |
+
"""
|
118 |
+
|
119 |
+
# Make sure text is lowered
|
120 |
+
text_query = text_query.lower()
|
121 |
+
|
122 |
+
# If the image size is too large, we make it smaller
|
123 |
+
img = resize_image_max_dimension(img, max_size=1024)
|
124 |
+
|
125 |
+
# Preprocess the image
|
126 |
+
inputs = processor(images=img, text=text_query, return_tensors="pt").to(DEVICE)
|
127 |
+
|
128 |
+
with torch.no_grad():
|
129 |
+
outputs = model(**inputs)
|
130 |
+
|
131 |
+
results = processor.post_process_grounded_object_detection(
|
132 |
+
outputs,
|
133 |
+
inputs.input_ids,
|
134 |
+
box_threshold=box_threshold,
|
135 |
+
text_threshold=text_threshold,
|
136 |
+
target_sizes=[img.size[::-1]]
|
137 |
+
)[0]
|
138 |
+
|
139 |
+
img_out = img.copy()
|
140 |
+
img_out = draw_boxes(
|
141 |
+
img_out,
|
142 |
+
boxes = results["boxes"].cpu().numpy(),
|
143 |
+
labels = results.get("text_labels", results.get("labels", [])),
|
144 |
+
scores = results["scores"]
|
145 |
+
)
|
146 |
+
return img_out
|
147 |
+
|
148 |
+
# Create Gradio demo
|
149 |
+
demo = gr.Interface(
|
150 |
+
fn = detect_and_draw,
|
151 |
+
inputs = [
|
152 |
+
gr.Image(type="pil", label="Image"),
|
153 |
+
gr.Textbox(value="",
|
154 |
+
label="Text Query (lowercase, end each with '.', for example 'a bird. a tree.')"),
|
155 |
+
gr.Slider(0.0, 1.0, 0.4, 0.05, label="Box Threshold"),
|
156 |
+
gr.Slider(0.0, 1.0, 0.3, 0.05, label="Text Threshold")
|
157 |
+
],
|
158 |
+
outputs = gr.Image(type="pil", label="Detections"),
|
159 |
+
title = "LLMDet Demo: Open-Vocabulary Grounded Object Detection",
|
160 |
+
description = """Upload an image, enter text queries, and adjust thresholds to see detections.
|
161 |
+
|
162 |
+
Adapted from LLMDet GitHub repo [Hugging Face demo](https://github.com/iSEE-Laboratory/LLMDet/tree/main/hf_model).
|
163 |
+
|
164 |
+
See original:
|
165 |
+
* [LLMDet GitHub](https://github.com/iSEE-Laboratory/LLMDet/tree/main?tab=readme-ov-file)
|
166 |
+
* [LLMDet Paper](https://arxiv.org/abs/2501.18954) - LLMDet: Learning Strong Open-Vocabulary Object Detectors under the Supervision of Large Language Models
|
167 |
+
* [LLMDet model checkpoint](https://huggingface.co/fushh7/llmdet_swin_large_hf)
|
168 |
+
"""
|
169 |
+
)
|
170 |
+
|
171 |
+
demo.launch()
|