Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,128 Bytes
7861c06 e607f57 7861c06 c97bdc0 7861c06 3caa9c5 7861c06 e607f57 7861c06 605b7f7 7861c06 010417c 7861c06 605b7f7 7861c06 605b7f7 7861c06 010417c 7861c06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 |
import time
import json
import random
import io
import ast
from PIL import Image, ImageDraw, ImageFont
from PIL import ImageColor
import xml.etree.ElementTree as ET
import spaces
import torch
import gradio as gr
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
### Load the model and helper functions ###
model_path = "Qwen/Qwen2.5-VL-7B-Instruct"
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(model_path,
torch_dtype=torch.bfloat16,
# attn_implementation="flash_attention_2", # note: can use flash attention (if possible) for faster inference
attn_implementation="sdpa").to("cuda")
processor = AutoProcessor.from_pretrained(model_path)
# Note: many of the helper functions come from the Qwen2.5-VL spatial understanding cookbook: https://github.com/QwenLM/Qwen2.5-VL/blob/main/cookbooks/spatial_understanding.ipynb
additional_colors = [colorname for (colorname, colorcode) in ImageColor.colormap.items()]
def decode_xml_points(text):
try:
root = ET.fromstring(text)
num_points = (len(root.attrib) - 1) // 2
points = []
for i in range(num_points):
x = root.attrib.get(f'x{i+1}')
y = root.attrib.get(f'y{i+1}')
points.append([x, y])
alt = root.attrib.get('alt')
phrase = root.text.strip() if root.text else None
return {
"points": points,
"alt": alt,
"phrase": phrase
}
except Exception as e:
print(e)
return None
def plot_bounding_boxes(im,
bounding_boxes,
input_width,
input_height):
"""
Plots bounding boxes on an image with markers for each a name, using PIL, normalized coordinates, and different colors.
Args:
img_path: The path to the image file.
bounding_boxes: A list of bounding boxes containing the name of the object
and their positions in normalized [y1 x1 y2 x2] format.
"""
# Load the image
img = im
width, height = img.size
print(f"Plotting on image with size: {img.size}")
# Create a drawing object
draw = ImageDraw.Draw(img)
# Define a list of colors
colors = [
'red',
'green',
'blue',
'yellow',
'orange',
'pink',
'purple',
'brown',
'gray',
'beige',
'turquoise',
'cyan',
'magenta',
'lime',
'navy',
'maroon',
'teal',
'olive',
'coral',
'lavender',
'violet',
'gold',
'silver',
] + additional_colors
# Parsing out the markdown fencing
bounding_boxes = parse_json(bounding_boxes)
font = ImageFont.load_default(size=16.0)
try:
json_output = ast.literal_eval(bounding_boxes)
except Exception as e:
end_idx = bounding_boxes.rfind('"}') + len('"}')
truncated_text = bounding_boxes[:end_idx] + "]"
json_output = ast.literal_eval(truncated_text)
print(json_output)
# Iterate over the bounding boxes
for i, bounding_box in enumerate(json_output):
# Select a color from the list
color = colors[i % len(colors)]
# Convert normalized coordinates to absolute coordinates
abs_y1 = int(bounding_box["bbox_2d"][1]/input_height * height)
abs_x1 = int(bounding_box["bbox_2d"][0]/input_width * width)
abs_y2 = int(bounding_box["bbox_2d"][3]/input_height * height)
abs_x2 = int(bounding_box["bbox_2d"][2]/input_width * width)
if abs_x1 > abs_x2:
abs_x1, abs_x2 = abs_x2, abs_x1
if abs_y1 > abs_y2:
abs_y1, abs_y2 = abs_y2, abs_y1
target_box = [abs_x1, abs_y1, abs_x2, abs_y2]
print(f"[INFO] Target box (XYXY): {target_box} | Label: {bounding_box['label']}")
# Draw the bounding box
draw.rectangle(
((abs_x1, abs_y1),
(abs_x2, abs_y2)),
outline=color,
width=4
)
# Draw the text
if "label" in bounding_box:
draw.text((abs_x1 + 8, abs_y1 + 6),
bounding_box["label"],
fill=color,
font=font)
# Display the image
return img
def plot_points(im, text, input_width, input_height):
img = im
width, height = img.size
draw = ImageDraw.Draw(img)
colors = [
'red', 'green', 'blue', 'yellow', 'orange', 'pink', 'purple', 'brown', 'gray',
'beige', 'turquoise', 'cyan', 'magenta', 'lime', 'navy', 'maroon', 'teal',
'olive', 'coral', 'lavender', 'violet', 'gold', 'silver',
] + additional_colors
xml_text = text.replace('```xml', '')
xml_text = xml_text.replace('```', '')
data = decode_xml_points(xml_text)
if data is None:
img.show()
return
points = data['points']
description = data['phrase']
font = ImageFont.truetype("NotoSansCJK-Regular.ttc", size=14)
for i, point in enumerate(points):
color = colors[i % len(colors)]
abs_x1 = int(point[0])/input_width * width
abs_y1 = int(point[1])/input_height * height
radius = 2
draw.ellipse([(abs_x1 - radius, abs_y1 - radius), (abs_x1 + radius, abs_y1 + radius)], fill=color)
draw.text((abs_x1 + 8, abs_y1 + 6), description, fill=color, font=font)
img.show()
# @title Parsing JSON output
def parse_json(json_output):
# Parsing out the markdown fencing
lines = json_output.splitlines()
for i, line in enumerate(lines):
if line == "```json":
json_output = "\n".join(lines[i+1:]) # Remove everything before "```json"
json_output = json_output.split("```")[0] # Remove everything after the closing "```"
break # Exit the loop once "```json" is found
return json_output
def resize_image_to_max_dimension(image, max_dimension=1024):
"""
Resize an image so that its longest dimension is max_dimension pixels,
but only if either dimension exceeds max_dimension.
Maintains the original aspect ratio.
Args:
image: PIL Image object
max_dimension: Maximum allowed dimension (default: 1024)
Returns:
Resized PIL Image object
"""
# Get current dimensions
width, height = image.size
# Check if resizing is needed
if width <= max_dimension and height <= max_dimension:
return image # No resizing needed
# Calculate new dimensions maintaining aspect ratio
if width >= height:
# Width is the longest dimension
new_width = max_dimension
new_height = int((height / width) * max_dimension)
else:
# Height is the longest dimension
new_height = max_dimension
new_width = int((width / height) * max_dimension)
# Resize the image
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
print(f"Image resized from {width}x{height} to {new_width}x{new_height}")
return resized_image
def inference(img_url,
prompt,
system_prompt="You are a helpful assistant who is very knowledgable about foods from all over the world. You always respond with high quality answers about what kinds of edible foods and drinks are visible in an image.",
max_new_tokens=1024):
start_time = time.time()
if isinstance(img_url, str):
image = Image.open(img_url)
else:
image = resize_image_to_max_dimension(img_url)
messages = [
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
},
{
"image": img_url
}
]
}
]
text = processor.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
# print("input:\n",text)
inputs = processor(text=[text],
images=[image],
padding=True,
return_tensors="pt").to('cuda')
output_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print("[INFO] output:\n",output_text[0])
end_time = time.time()
total_time = end_time - start_time
print(f"[INFO] Total time for inference: {round(total_time, 4)} seconds")
input_height = inputs['image_grid_thw'][0][1]*14
input_width = inputs['image_grid_thw'][0][2]*14
return output_text[0], input_height, input_width
import numpy as np
from PIL import Image
def numpy_to_pil(numpy_array):
"""
Convert a NumPy array to a PIL Image.
Parameters:
-----------
numpy_array : numpy.ndarray
The NumPy array to convert. Should be of shape (height, width) for
grayscale or (height, width, channels) for RGB/RGBA images.
Data type should preferably be np.uint8.
Returns:
--------
PIL.Image.Image
The converted PIL Image.
"""
# Ensure array is uint8 type (required for most standard images)
if numpy_array.dtype != np.uint8:
# If array is float in [0,1] range
if numpy_array.dtype in [np.float32, np.float64] and numpy_array.max() <= 1.0:
numpy_array = (numpy_array * 255).astype(np.uint8)
# Otherwise just convert to uint8
else:
numpy_array = numpy_array.astype(np.uint8)
# Convert to PIL Image
pil_image = Image.fromarray(numpy_array)
return pil_image
### Prompt section ###
prompt_thinking = """Outline the bounding box coordinates and names of each unique edible food and drink item and output all the coordinates in JSON format.
Only outline food and drink items that are edible.
Ignore hard to see items in the background. Only focus on the foreground.
Output a max of one box per unique food or drink group.
Use a visually description name for the target item.
Make sure to list each unique food/drink item.
Start with <think></think> tags to visually inspect the whole image and list every unique edible food/drink item you are going to locate.
* Keep the think tags succinct, just say "The image contains the following unique foods... I will create boundiung box coordines for those."
* If there are no visible edible foods or drinks, say "The image contains the following unique foods: None. ... I will set the label to 'no foods found'."
Make sure to output the bounding box coordinates in valid JSON in the format [{"bbox_2d": ..., "label": ...}...].
Do not miss any foods/drinks. It's important to get them all.
If no edible foods or drinks are found in the image, return a single bbox_2d with the coordinates of the whole image with the label 'no foods found'.
* For example: [{"bbox_2d": ..., "label": "no foods found"}]
For example:
<examples>
<example_1>
<think>
The image contains the following unique foods/drinks: A pint of dark beer (Guinness), roasted pork slices with gravy, pork crackling, a green salad, roasted potato wedges, roasted sweet potato wedges, coleslaw/shredded cabbage salad, and roasted cubed root vegetable (possibly pumpkin or sweet potato) with cheese. I will create bounding box coordinates for those.
</think>
```json
[
{"bbox_2d": [27, 271, 365, 531], "label": "Pint of Guinness"},
{"bbox_2d": [343, 300, 609, 711], "label": "Green Salad"},
{"bbox_2d": [524, 600, 706, 956], "label": "Roasted Potato Wedges"},
{"bbox_2d": [425, 619, 530, 864], "label": "Roasted Sweet Potato Wedge"},
{"bbox_2d": [556, 372, 968, 799], "label": "Coleslaw/Shredded Cabbage Salad"},
{"bbox_2d": [661, 228, 919, 514], "label": "Roasted Root Vegetable (possibly Sweet Potato or Pumpkin)"},
{"bbox_2d": [488, 58, 747, 394], "label": "Roasted Pork with Gravy"},
{"bbox_2d": [348, 163, 488, 330], "label": "Small piece of pork crackling"}
]
```
</example_1>
<example_2>
<think>
The image contains the following unique foods/drinks: A bottle of beer, a bottle of red wine, sliced beef brisket, potato salad, corn salad, spinach salad, pickled red vegetable (possibly onion or beet), and pickle slices. I will create bounding box coordinates for those.
</think>
```json
[
{"box_2d": [0, 146, 271, 390], "label": "Bottle of Red Wine"},
{"box_2d": [502, 363, 711, 677], "label": "Sliced Beef Brisket"},
{"box_2d": [363, 237, 519, 486], "label": "Corn Salad"},
{"box_2d": [428, 621, 532, 811], "label": "Pickled Red Vegetable"},
{"box_2d": [518, 647, 638, 767], "label": "Pickle Slices"},
{"box_2d": [341, 449, 541, 704], "label": "Spinach Salad"},
{"box_2d": [504, 220, 639, 411], "label": "Potato Salad"},
{"box_2d": [0, 0, 234, 181], "label": "Bottle of Beer"}
]
```
</example_2>
<example_3>
<think>
The image contains the following unique foods: Scrambled eggs on toast, pea shoots (microgreens), an orange dip/spread (likely romesco sauce), and grilled bacon (likely bacon or ham). I will create bounding box coordinates for those.
</think>
```json
[
{"box_2d": [241, 383, 536, 685], "label": "Scrambled Eggs"},
{"box_2d": [348, 630, 623, 879], "label": "Grilled Toast"},
{"box_2d": [67, 107, 506, 516], "label": "Pea Shoots"},
{"box_2d": [485, 198, 645, 440], "label": "Romesco Sauce"},
{"box_2d": [512, 657, 702, 959], "label": "Grilled Bacon"}
]
```
</example_3>
<example_4>
<think>
The image contains the following unique foods: Sliced roasted duck, thin pancakes or crepes (like for Peking duck), sliced cucumber, cilantro, pickled red onions, sliced red chilies, hoisin sauce, and crispy fried shallots or garlic. I will create bounding box coordinates for those.
</think>
```json
[
{"box_2d": [294, 462, 367, 645], "label": "Crispy Fried Shallots"},
{"box_2d": [325, 657, 425, 843], "label": "Hoisin Sauce"},
{"box_2d": [393, 401, 643, 830], "label": "Thin Crepes"},
{"box_2d": [593, 363, 808, 800], "label": "Sliced Roasted Duck"},
{"box_2d": [283, 195, 443, 479], "label": "Cilantro"},
{"box_2d": [398, 119, 641, 310], "label": "Sliced Cucumber"},
{"box_2d": [412, 298, 556, 440], "label": "Pickled Red Onions"},
{"box_2d": [539, 265, 704, 419], "label": "Sliced Red Chilies"}
]
```
</example_4>
<example_5>
<think>
The image contains the following unique foods: Sliced cooked chicken, halved hard-boiled eggs, cashew nuts, peanut sauce/dressing, and a noodle salad (rice noodles, shredded carrots, cucumber, cilantro, red cabbage/onion). I will create bounding box coordinates for those.
</think>
```json
[
{"box_2d": [191, 217, 403, 496], "label": "Sliced Cooked Chicken"},
{"box_2d": [173, 436, 338, 683], "label": "Halved Hard-Boiled Eggs"},
{"box_2d": [330, 250, 565, 460], "label": "Cashew Nuts"},
{"box_2d": [306, 388, 491, 729], "label": "Peanut Sauce/Dressing"},
{"box_2d": [445, 280, 641, 779], "label": "Noodle Salad With Carrots, Cilantro and Red Onion"}
]
```
</example_5>
<example_6>
<think>
The image contains the following unique food: A milk chocolate bar. I will create bounding box coordinates for this.
</think>
```json
[
{"bbox_2d": [256, 196, 495, 770], "label": "Milk Chocolate Bar"}
]
```
</example_6>
<example_7>
<think>
The image contains the following unique food: A glass of water. I will create bounding box coordinates for this.
</think>
```json
[
{"bbox_2d": [180, 150, 702, 630], "label": "Glass of Water"}
]
```
</example_7>
<example_8>
<think>
The image contains the following unique food: An iced coffee with milk beverage. I will create bounding box coordinates for this.
</think>
```json
[
{"bbox_2d": [121, 214, 430, 624], "label": "Iced Coffee with Milk"}
]
```
</example_8>
<example_9>
<think>
The image contains the following unique foods: Three fried eggs on top of rice cakes and topped with grated cheese, a jar of pickled vegetables. I will create bounding box coordinates for these items.
</think>
```json
[
{"bbox_2d": [144, 385, 382, 622], "label": "Fried Egg with Grated Cheese on a Rice Cake"},
{"bbox_2d": [400, 433, 660, 728], "label": "Fried Egg with Grated Cheese on a Rice Cake"},
{"bbox_2d": [176, 593, 510, 878], "label": "Fried Egg with Grated Cheese on a Rice Cake"},
{"bbox_2d": [115, 22, 330, 348], "label": "Jar of Pickled Vegetables"},
]
```
</example_9>
<example_10>
<think>
The image contains the following unique foods: Halved hard-boiled eggs, sliced cucumber sticks, celery sticks, almond butter, chopped tomatoes, and beef jerky/biltong. I will create bounding box coordinates for those.
</think>
```json
[
{"box_2d": [259, 130, 484, 388], "label": "Halved Hard-Boiled Eggs"},
{"box_2d": [179, 328, 410, 570], "label": "Sliced Cucumber Sticks"},
{"box_2d": [225, 530, 445, 845], "label": "Celery Sticks"},
{"box_2d": [259, 537, 382, 724], "label": "Almond Butter"},
{"box_2d": [471, 115, 766, 440], "label": "Chopped Tomatoes"},
{"box_2d": [388, 409, 674, 954], "label": "Beef Biltong"}
]
```
</example_10>
<example_11>
<think>
The image contains the following unique foods: None. It is an image of a step bin in a store. I will set the label to 'no foods found'.
</think>
```json
[
{"bbox_2d": [252, 630, 680, 1151], "label": "no foods found"}
]
<example_11>
</examples>
"""
# Make a prompt with no thinking (output less but better)
prompt_no_thinking = """Outline the bounding box coordinates and names of each unique edible food and drink item and output all the coordinates in JSON format.
Only outline food and drink items that are edible.
Ignore hard to see items in the background. Only focus on the foreground.
Output a max of one box per unique food or drink group.
Use a visually description name for the target item.
Make sure to list each unique food/drink item.
Make sure to output the bounding box coordinates in valid JSON in the format [{"bbox_2d": ..., "label": ...}...].
Do not miss any foods/drinks. It's important to get them all.
If no edible foods or drinks are found in the image, return a single bbox_2d with the coordinates of the whole image with the label 'no foods found'.
* For example: [{"bbox_2d": ..., "label": "no foods found"}]
For example:
<examples>
<example_1>
```json
[
{"bbox_2d": [27, 271, 365, 531], "label": "Pint of Guinness"},
{"bbox_2d": [343, 300, 609, 711], "label": "Green Salad"},
{"bbox_2d": [524, 600, 706, 956], "label": "Roasted Potato Wedges"},
{"bbox_2d": [425, 619, 530, 864], "label": "Roasted Sweet Potato Wedge"},
{"bbox_2d": [556, 372, 968, 799], "label": "Coleslaw/Shredded Cabbage Salad"},
{"bbox_2d": [661, 228, 919, 514], "label": "Roasted Root Vegetable (possibly Sweet Potato or Pumpkin)"},
{"bbox_2d": [488, 58, 747, 394], "label": "Roasted Pork with Gravy"},
{"bbox_2d": [348, 163, 488, 330], "label": "Small piece of pork crackling"}
]
```
</example_1>
<example_2>
```json
[
{"box_2d": [0, 146, 271, 390], "label": "Bottle of Red Wine"},
{"box_2d": [502, 363, 711, 677], "label": "Sliced Beef Brisket"},
{"box_2d": [363, 237, 519, 486], "label": "Corn Salad"},
{"box_2d": [428, 621, 532, 811], "label": "Pickled Red Vegetable"},
{"box_2d": [518, 647, 638, 767], "label": "Pickle Slices"},
{"box_2d": [341, 449, 541, 704], "label": "Spinach Salad"},
{"box_2d": [504, 220, 639, 411], "label": "Potato Salad"},
{"box_2d": [0, 0, 234, 181], "label": "Bottle of Beer"}
]
```
</example_2>
<example_3>
```json
[
{"bbox_2d": [192, 211, 594, 496], "label": "Baked Zucchini"},
{"bbox_2d": [87, 439, 454, 839], "label": "Creamy Broccoli Casserole"},
{"bbox_2d": [388, 300, 803, 672], "label": "Roasted Meat with Gravy"},
{"bbox_2d": [306, 588, 735, 975], "label": "Peas"},
{"bbox_2d": [634, 596, 826, 818], "label": "Roasted Potato"}
]
```
</example_3>
<example_4>
```json
[
{"box_2d": [294, 462, 367, 645], "label": "Crispy Fried Shallots"},
{"box_2d": [325, 657, 425, 843], "label": "Hoisin Sauce"},
{"box_2d": [393, 401, 643, 830], "label": "Thin Crepes"},
{"box_2d": [593, 363, 808, 800], "label": "Sliced Roasted Duck"},
{"box_2d": [283, 195, 443, 479], "label": "Cilantro"},
{"box_2d": [398, 119, 641, 310], "label": "Sliced Cucumber"},
{"box_2d": [412, 298, 556, 440], "label": "Pickled Red Onions"},
{"box_2d": [539, 265, 704, 419], "label": "Sliced Red Chilies"}
]
```
</example_4>
<example_5>
```json
[
{"box_2d": [191, 217, 403, 496], "label": "Sliced Cooked Chicken"},
{"box_2d": [173, 436, 338, 683], "label": "Halved Hard-Boiled Eggs"},
{"box_2d": [330, 250, 565, 460], "label": "Cashew Nuts"},
{"box_2d": [306, 388, 491, 729], "label": "Peanut Sauce/Dressing"},
{"box_2d": [445, 280, 641, 779], "label": "Noodle Salad With Carrots, Cilantro and Red Onion"}
]
```
</example_5>
<example_6>
```json
[
{"bbox_2d": [256, 196, 495, 770], "label": "Milk Chocolate Bar"}
]
```
</example_6>
<example_7>
```json
[
{"bbox_2d": [180, 150, 702, 630], "label": "Glass of Water"}
]
```
</example_7>
<example_8>
```json
[
{"bbox_2d": [121, 214, 430, 624], "label": "Iced Coffee with Milk"}
]
```
</example_8>
<example_9>
```json
[
{"bbox_2d": [144, 385, 382, 622], "label": "Fried Egg with Grated Cheese on a Rice Cake"},
{"bbox_2d": [400, 433, 660, 728], "label": "Fried Egg with Grated Cheese on a Rice Cake"},
{"bbox_2d": [176, 593, 510, 878], "label": "Fried Egg with Grated Cheese on a Rice Cake"},
{"bbox_2d": [115, 22, 330, 348], "label": "Jar of Pickled Vegetables"},
]
```
</example_9>
<example_10>
```json
[
{"box_2d": [259, 130, 484, 388], "label": "Halved Hard-Boiled Eggs"},
{"box_2d": [179, 328, 410, 570], "label": "Sliced Cucumber Sticks"},
{"box_2d": [225, 530, 445, 845], "label": "Celery Sticks"},
{"box_2d": [259, 537, 382, 724], "label": "Almond Butter"},
{"box_2d": [471, 115, 766, 440], "label": "Chopped Tomatoes"},
{"box_2d": [388, 409, 674, 954], "label": "Beef Biltong"}
]
```
</example_10>
<example_11>
```json
[
{"bbox_2d": [252, 630, 680, 1151], "label": "no foods found"}
]
<example_11>
</examples>
"""
### Load the app ###
# Note: Depending on how many foods are in an image, the following may take longer then the default 60 seconds to run on a Hugging Face Zero GPU.
# So we set the duration to 120 (120 seconds).
@spaces.GPU(duration=120)
def infer_on_image(input_image):
print(f"[INFO] Image type: {type(input_image)}, shape: {input_image.shape}")
# Convert image to PIL (it gets uploaded as NumPy)
image_1 = numpy_to_pil(numpy_array=input_image)
### Thinking prompt ###
start_time_thinking = time.time()
response, input_height, input_width = inference(img_url=image_1,
prompt=prompt_thinking)
end_time_thinking = time.time()
total_time_thinking = round(end_time_thinking - start_time_thinking,
4)
output_image_1 = plot_bounding_boxes(image_1,
response,
input_width,
input_height)
### Non-thinking prompt ###
# Make a second image to prevent plotting duplicates
# Convert image to PIL (it gets uploaded as NumPy)
image_2 = numpy_to_pil(numpy_array=input_image)
start_time_no_thinking = time.time()
response_no_thinking, input_height, input_width = inference(img_url=image_2,
prompt=prompt_no_thinking)
end_time_no_thinking = time.time()
total_time_no_thinking = round(end_time_no_thinking - start_time_no_thinking,
4)
output_image_2 = plot_bounding_boxes(image_2,
response_no_thinking,
input_width,
input_height)
return output_image_1, response, total_time_thinking, output_image_2, response_no_thinking, total_time_no_thinking
# Want input to be a single image
# Outputs to be time + image
description = f"""Demo based on example [Qwen2.5-VL spatial notebook](https://github.com/QwenLM/Qwen2.5-VL/blob/main/cookbooks/spatial_understanding.ipynb) for detecting foods and drinks in images with bounding boxes. Input an image of food/drink for bounding boxes to be detected. If no food is present in an image the model should return 'no foods found'.\n
One prediction will use thinking tags, e.g. <think>...</think> to try an describe what's in the image. The other will directly predict a JSON of bounding box coordinates and labels.
Boxes may not be as accurate as a dedicated object detection model but the benefit here is that they are class agnostic (e.g. the model can detect a wide range of items despite never being explicitly trained on them).
The foundation knowledge in Qwen2.5-VL (we are using [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) in this demo) means it can detect a wide range of foods and drinks.
See the app.py file for the different prompts used."""
demo = gr.Interface(fn=infer_on_image,
inputs=gr.Image(label="Input image"),
outputs=[gr.Image(label="Image w/ thinking tags"),
gr.Text(label="Raw output w/ thinking tags"),
gr.Text(label="Inference time w/ thinking tags"),
gr.Image(label="Image w/o thinking tags"),
gr.Text(label="Raw output w/o thinking tags"),
gr.Text(label="Inference time w/o thinking tags")],
title="Qwen2.5-VL Food Detection ποΈπ",
description=description,
# Examples come in the form of a list of lists, where each inner list contains elements to prefill the `inputs` parameter with
examples=[
["examples/example_1.jpeg"],
["examples/example_2.jpeg"],
["examples/example_3.jpeg"]
],
cache_examples=True)
demo.launch(debug=True) |