Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image, ImageDraw
|
| 4 |
+
|
| 5 |
+
from transformers import AutoImageProcessor
|
| 6 |
+
from transformers import AutoModelForObjectDetection
|
| 7 |
+
|
| 8 |
+
from PIL import Image
|
| 9 |
+
|
| 10 |
+
model_save_path = "mrdbourke/detr_finetuned_trashify_box_detector"
|
| 11 |
+
|
| 12 |
+
image_processor = AutoImageProcessor.from_pretrained(model_save_path)
|
| 13 |
+
model = AutoModelForObjectDetection.from_pretrained(model_save_path)
|
| 14 |
+
|
| 15 |
+
id2label = model.config.id2label
|
| 16 |
+
color_dict = {
|
| 17 |
+
"not_trash": "red",
|
| 18 |
+
"bin": "green",
|
| 19 |
+
"trash": "blue",
|
| 20 |
+
"hand": "purple"
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
+
model = model.to(device)
|
| 25 |
+
|
| 26 |
+
def predict_on_image(image, conf_threshold=0.25):
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
inputs = image_processor(images=[image], return_tensors="pt")
|
| 29 |
+
outputs = model(**inputs.to(device))
|
| 30 |
+
|
| 31 |
+
target_sizes = torch.tensor([[image.size[1], image.size[0]]]) # height, width
|
| 32 |
+
|
| 33 |
+
results = image_processor.post_process_object_detection(outputs,
|
| 34 |
+
threshold=conf_threshold,
|
| 35 |
+
target_sizes=target_sizes)[0]
|
| 36 |
+
# Return all items in results to CPU
|
| 37 |
+
for key, value in results.items():
|
| 38 |
+
try:
|
| 39 |
+
results[key] = value.item().cpu() # can't get scalar as .item() so add try/except block
|
| 40 |
+
except:
|
| 41 |
+
results[key] = value.cpu()
|
| 42 |
+
|
| 43 |
+
# Can return results as plotted on a PIL image (then display the image)
|
| 44 |
+
draw = ImageDraw.Draw(image)
|
| 45 |
+
|
| 46 |
+
for box, score, label in zip(results["boxes"], results["scores"], results["labels"]):
|
| 47 |
+
# Create coordinates
|
| 48 |
+
x, y, x2, y2 = tuple(box.tolist())
|
| 49 |
+
|
| 50 |
+
# Get label_name
|
| 51 |
+
label_name = id2label[label.item()]
|
| 52 |
+
targ_color = color_dict[label_name]
|
| 53 |
+
|
| 54 |
+
# Draw the rectangle
|
| 55 |
+
draw.rectangle(xy=(x, y, x2, y2),
|
| 56 |
+
outline=targ_color,
|
| 57 |
+
width=3)
|
| 58 |
+
|
| 59 |
+
# Create a text string to display
|
| 60 |
+
text_string_to_show = f"{label_name} ({round(score.item(), 3)})"
|
| 61 |
+
|
| 62 |
+
# Draw the text on the image
|
| 63 |
+
draw.text(xy=(x, y),
|
| 64 |
+
text=text_string_to_show,
|
| 65 |
+
fill="white")
|
| 66 |
+
|
| 67 |
+
# Remove the draw each time
|
| 68 |
+
del draw
|
| 69 |
+
|
| 70 |
+
return image
|
| 71 |
+
|
| 72 |
+
demo = gr.Interface(
|
| 73 |
+
fn=predict_on_image,
|
| 74 |
+
inputs=[
|
| 75 |
+
gr.Image(type="pil", label="Upload Target Image"),
|
| 76 |
+
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold")
|
| 77 |
+
],
|
| 78 |
+
outputs=gr.Image(type="pil"),
|
| 79 |
+
title="🚮 Trashify Object Detection Demo",
|
| 80 |
+
description="Upload an image to detect whether there's a bin, a hand or trash in it."
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
if __name__ == "__main__":
|
| 84 |
+
demo.launch()
|