BACKROUND / app.py
mrdilaw's picture
Create app.py
fd4de20 verified
raw
history blame
2.19 kB
import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
torch.set_float32_matmul_precision("high")
# تحميل النموذج
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
# تجهيز الصورة قبل الإدخال
transform_image = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# المعالجة الأساسية
@spaces.GPU
def process(image):
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
# واجهة المستخدم
def from_upload(image):
im = load_img(image, output_type="pil").convert("RGB")
origin = im.copy()
processed = process(im)
return (processed, origin)
def from_url(url):
im = load_img(url, output_type="pil").convert("RGB")
origin = im.copy()
processed = process(im)
return (processed, origin)
def process_file(f):
name_path = f.rsplit(".", 1)[0] + ".png"
im = load_img(f, output_type="pil").convert("RGB")
transparent = process(im)
transparent.save(name_path)
return name_path
# واجهات التبويبات
tab1 = gr.Interface(from_upload, inputs=gr.Image(), outputs=[gr.Image(label="Processed"), gr.Image(label="Original")], title="Upload Image")
tab2 = gr.Interface(from_url, inputs=gr.Textbox(label="Paste Image URL"), outputs=[gr.Image(label="Processed"), gr.Image(label="Original")], title="From URL")
tab3 = gr.Interface(process_file, inputs=gr.Image(type="filepath"), outputs=gr.File(), title="Save Transparent PNG")
demo = gr.TabbedInterface([tab1, tab2, tab3], ["Upload", "URL", "Save PNG"], title="Background Removal with BiRefNet")
if __name__ == "__main__":
demo.launch(show_error=True)