Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python3 | |
| # -*- encoding: utf-8 -*- | |
| # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
| # MIT License (https://opensource.org/licenses/MIT) | |
| import time | |
| import torch | |
| import logging | |
| from contextlib import contextmanager | |
| from typing import Dict, Optional, Tuple | |
| from distutils.version import LooseVersion | |
| from funasr_detach.register import tables | |
| from funasr_detach.utils import postprocess_utils | |
| from funasr_detach.utils.datadir_writer import DatadirWriter | |
| from funasr_detach.train_utils.device_funcs import force_gatherable | |
| from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer | |
| from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss | |
| from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus | |
| from funasr_detach.models.transformer.utils.nets_utils import get_transducer_task_io | |
| from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank | |
| from funasr_detach.models.transducer.beam_search_transducer import BeamSearchTransducer | |
| if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): | |
| from torch.cuda.amp import autocast | |
| else: | |
| # Nothing to do if torch<1.6.0 | |
| def autocast(enabled=True): | |
| yield | |
| class Transducer(torch.nn.Module): | |
| def __init__( | |
| self, | |
| frontend: Optional[str] = None, | |
| frontend_conf: Optional[Dict] = None, | |
| specaug: Optional[str] = None, | |
| specaug_conf: Optional[Dict] = None, | |
| normalize: str = None, | |
| normalize_conf: Optional[Dict] = None, | |
| encoder: str = None, | |
| encoder_conf: Optional[Dict] = None, | |
| decoder: str = None, | |
| decoder_conf: Optional[Dict] = None, | |
| joint_network: str = None, | |
| joint_network_conf: Optional[Dict] = None, | |
| transducer_weight: float = 1.0, | |
| fastemit_lambda: float = 0.0, | |
| auxiliary_ctc_weight: float = 0.0, | |
| auxiliary_ctc_dropout_rate: float = 0.0, | |
| auxiliary_lm_loss_weight: float = 0.0, | |
| auxiliary_lm_loss_smoothing: float = 0.0, | |
| input_size: int = 80, | |
| vocab_size: int = -1, | |
| ignore_id: int = -1, | |
| blank_id: int = 0, | |
| sos: int = 1, | |
| eos: int = 2, | |
| lsm_weight: float = 0.0, | |
| length_normalized_loss: bool = False, | |
| # report_cer: bool = True, | |
| # report_wer: bool = True, | |
| # sym_space: str = "<space>", | |
| # sym_blank: str = "<blank>", | |
| # extract_feats_in_collect_stats: bool = True, | |
| share_embedding: bool = False, | |
| # preencoder: Optional[AbsPreEncoder] = None, | |
| # postencoder: Optional[AbsPostEncoder] = None, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| if specaug is not None: | |
| specaug_class = tables.specaug_classes.get(specaug) | |
| specaug = specaug_class(**specaug_conf) | |
| if normalize is not None: | |
| normalize_class = tables.normalize_classes.get(normalize) | |
| normalize = normalize_class(**normalize_conf) | |
| encoder_class = tables.encoder_classes.get(encoder) | |
| encoder = encoder_class(input_size=input_size, **encoder_conf) | |
| encoder_output_size = encoder.output_size() | |
| decoder_class = tables.decoder_classes.get(decoder) | |
| decoder = decoder_class( | |
| vocab_size=vocab_size, | |
| **decoder_conf, | |
| ) | |
| decoder_output_size = decoder.output_size | |
| joint_network_class = tables.joint_network_classes.get(joint_network) | |
| joint_network = joint_network_class( | |
| vocab_size, | |
| encoder_output_size, | |
| decoder_output_size, | |
| **joint_network_conf, | |
| ) | |
| self.criterion_transducer = None | |
| self.error_calculator = None | |
| self.use_auxiliary_ctc = auxiliary_ctc_weight > 0 | |
| self.use_auxiliary_lm_loss = auxiliary_lm_loss_weight > 0 | |
| if self.use_auxiliary_ctc: | |
| self.ctc_lin = torch.nn.Linear(encoder.output_size(), vocab_size) | |
| self.ctc_dropout_rate = auxiliary_ctc_dropout_rate | |
| if self.use_auxiliary_lm_loss: | |
| self.lm_lin = torch.nn.Linear(decoder.output_size, vocab_size) | |
| self.lm_loss_smoothing = auxiliary_lm_loss_smoothing | |
| self.transducer_weight = transducer_weight | |
| self.fastemit_lambda = fastemit_lambda | |
| self.auxiliary_ctc_weight = auxiliary_ctc_weight | |
| self.auxiliary_lm_loss_weight = auxiliary_lm_loss_weight | |
| self.blank_id = blank_id | |
| self.sos = sos if sos is not None else vocab_size - 1 | |
| self.eos = eos if eos is not None else vocab_size - 1 | |
| self.vocab_size = vocab_size | |
| self.ignore_id = ignore_id | |
| self.frontend = frontend | |
| self.specaug = specaug | |
| self.normalize = normalize | |
| self.encoder = encoder | |
| self.decoder = decoder | |
| self.joint_network = joint_network | |
| self.criterion_att = LabelSmoothingLoss( | |
| size=vocab_size, | |
| padding_idx=ignore_id, | |
| smoothing=lsm_weight, | |
| normalize_length=length_normalized_loss, | |
| ) | |
| self.length_normalized_loss = length_normalized_loss | |
| self.beam_search = None | |
| self.ctc = None | |
| self.ctc_weight = 0.0 | |
| def forward( | |
| self, | |
| speech: torch.Tensor, | |
| speech_lengths: torch.Tensor, | |
| text: torch.Tensor, | |
| text_lengths: torch.Tensor, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: | |
| """Encoder + Decoder + Calc loss | |
| Args: | |
| speech: (Batch, Length, ...) | |
| speech_lengths: (Batch, ) | |
| text: (Batch, Length) | |
| text_lengths: (Batch,) | |
| """ | |
| if len(text_lengths.size()) > 1: | |
| text_lengths = text_lengths[:, 0] | |
| if len(speech_lengths.size()) > 1: | |
| speech_lengths = speech_lengths[:, 0] | |
| batch_size = speech.shape[0] | |
| # 1. Encoder | |
| encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
| if ( | |
| hasattr(self.encoder, "overlap_chunk_cls") | |
| and self.encoder.overlap_chunk_cls is not None | |
| ): | |
| encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk( | |
| encoder_out, encoder_out_lens, chunk_outs=None | |
| ) | |
| # 2. Transducer-related I/O preparation | |
| decoder_in, target, t_len, u_len = get_transducer_task_io( | |
| text, | |
| encoder_out_lens, | |
| ignore_id=self.ignore_id, | |
| ) | |
| # 3. Decoder | |
| self.decoder.set_device(encoder_out.device) | |
| decoder_out = self.decoder(decoder_in, u_len) | |
| # 4. Joint Network | |
| joint_out = self.joint_network( | |
| encoder_out.unsqueeze(2), decoder_out.unsqueeze(1) | |
| ) | |
| # 5. Losses | |
| loss_trans, cer_trans, wer_trans = self._calc_transducer_loss( | |
| encoder_out, | |
| joint_out, | |
| target, | |
| t_len, | |
| u_len, | |
| ) | |
| loss_ctc, loss_lm = 0.0, 0.0 | |
| if self.use_auxiliary_ctc: | |
| loss_ctc = self._calc_ctc_loss( | |
| encoder_out, | |
| target, | |
| t_len, | |
| u_len, | |
| ) | |
| if self.use_auxiliary_lm_loss: | |
| loss_lm = self._calc_lm_loss(decoder_out, target) | |
| loss = ( | |
| self.transducer_weight * loss_trans | |
| + self.auxiliary_ctc_weight * loss_ctc | |
| + self.auxiliary_lm_loss_weight * loss_lm | |
| ) | |
| stats = dict( | |
| loss=loss.detach(), | |
| loss_transducer=loss_trans.detach(), | |
| aux_ctc_loss=loss_ctc.detach() if loss_ctc > 0.0 else None, | |
| aux_lm_loss=loss_lm.detach() if loss_lm > 0.0 else None, | |
| cer_transducer=cer_trans, | |
| wer_transducer=wer_trans, | |
| ) | |
| # force_gatherable: to-device and to-tensor if scalar for DataParallel | |
| loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) | |
| return loss, stats, weight | |
| def encode( | |
| self, | |
| speech: torch.Tensor, | |
| speech_lengths: torch.Tensor, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Frontend + Encoder. Note that this method is used by asr_inference.py | |
| Args: | |
| speech: (Batch, Length, ...) | |
| speech_lengths: (Batch, ) | |
| ind: int | |
| """ | |
| with autocast(False): | |
| # Data augmentation | |
| if self.specaug is not None and self.training: | |
| speech, speech_lengths = self.specaug(speech, speech_lengths) | |
| # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN | |
| if self.normalize is not None: | |
| speech, speech_lengths = self.normalize(speech, speech_lengths) | |
| # Forward encoder | |
| # feats: (Batch, Length, Dim) | |
| # -> encoder_out: (Batch, Length2, Dim2) | |
| encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths) | |
| intermediate_outs = None | |
| if isinstance(encoder_out, tuple): | |
| intermediate_outs = encoder_out[1] | |
| encoder_out = encoder_out[0] | |
| if intermediate_outs is not None: | |
| return (encoder_out, intermediate_outs), encoder_out_lens | |
| return encoder_out, encoder_out_lens | |
| def _calc_transducer_loss( | |
| self, | |
| encoder_out: torch.Tensor, | |
| joint_out: torch.Tensor, | |
| target: torch.Tensor, | |
| t_len: torch.Tensor, | |
| u_len: torch.Tensor, | |
| ) -> Tuple[torch.Tensor, Optional[float], Optional[float]]: | |
| """Compute Transducer loss. | |
| Args: | |
| encoder_out: Encoder output sequences. (B, T, D_enc) | |
| joint_out: Joint Network output sequences (B, T, U, D_joint) | |
| target: Target label ID sequences. (B, L) | |
| t_len: Encoder output sequences lengths. (B,) | |
| u_len: Target label ID sequences lengths. (B,) | |
| Return: | |
| loss_transducer: Transducer loss value. | |
| cer_transducer: Character error rate for Transducer. | |
| wer_transducer: Word Error Rate for Transducer. | |
| """ | |
| if self.criterion_transducer is None: | |
| try: | |
| from warp_rnnt import rnnt_loss as RNNTLoss | |
| self.criterion_transducer = RNNTLoss | |
| except ImportError: | |
| logging.error( | |
| "warp-rnnt was not installed." | |
| "Please consult the installation documentation." | |
| ) | |
| exit(1) | |
| log_probs = torch.log_softmax(joint_out, dim=-1) | |
| loss_transducer = self.criterion_transducer( | |
| log_probs, | |
| target, | |
| t_len, | |
| u_len, | |
| reduction="mean", | |
| blank=self.blank_id, | |
| fastemit_lambda=self.fastemit_lambda, | |
| gather=True, | |
| ) | |
| if not self.training and (self.report_cer or self.report_wer): | |
| if self.error_calculator is None: | |
| from funasr_detach.metrics import ( | |
| ErrorCalculatorTransducer as ErrorCalculator, | |
| ) | |
| self.error_calculator = ErrorCalculator( | |
| self.decoder, | |
| self.joint_network, | |
| self.token_list, | |
| self.sym_space, | |
| self.sym_blank, | |
| report_cer=self.report_cer, | |
| report_wer=self.report_wer, | |
| ) | |
| cer_transducer, wer_transducer = self.error_calculator( | |
| encoder_out, target, t_len | |
| ) | |
| return loss_transducer, cer_transducer, wer_transducer | |
| return loss_transducer, None, None | |
| def _calc_ctc_loss( | |
| self, | |
| encoder_out: torch.Tensor, | |
| target: torch.Tensor, | |
| t_len: torch.Tensor, | |
| u_len: torch.Tensor, | |
| ) -> torch.Tensor: | |
| """Compute CTC loss. | |
| Args: | |
| encoder_out: Encoder output sequences. (B, T, D_enc) | |
| target: Target label ID sequences. (B, L) | |
| t_len: Encoder output sequences lengths. (B,) | |
| u_len: Target label ID sequences lengths. (B,) | |
| Return: | |
| loss_ctc: CTC loss value. | |
| """ | |
| ctc_in = self.ctc_lin( | |
| torch.nn.functional.dropout(encoder_out, p=self.ctc_dropout_rate) | |
| ) | |
| ctc_in = torch.log_softmax(ctc_in.transpose(0, 1), dim=-1) | |
| target_mask = target != 0 | |
| ctc_target = target[target_mask].cpu() | |
| with torch.backends.cudnn.flags(deterministic=True): | |
| loss_ctc = torch.nn.functional.ctc_loss( | |
| ctc_in, | |
| ctc_target, | |
| t_len, | |
| u_len, | |
| zero_infinity=True, | |
| reduction="sum", | |
| ) | |
| loss_ctc /= target.size(0) | |
| return loss_ctc | |
| def _calc_lm_loss( | |
| self, | |
| decoder_out: torch.Tensor, | |
| target: torch.Tensor, | |
| ) -> torch.Tensor: | |
| """Compute LM loss. | |
| Args: | |
| decoder_out: Decoder output sequences. (B, U, D_dec) | |
| target: Target label ID sequences. (B, L) | |
| Return: | |
| loss_lm: LM loss value. | |
| """ | |
| lm_loss_in = self.lm_lin(decoder_out[:, :-1, :]).view(-1, self.vocab_size) | |
| lm_target = target.view(-1).type(torch.int64) | |
| with torch.no_grad(): | |
| true_dist = lm_loss_in.clone() | |
| true_dist.fill_(self.lm_loss_smoothing / (self.vocab_size - 1)) | |
| # Ignore blank ID (0) | |
| ignore = lm_target == 0 | |
| lm_target = lm_target.masked_fill(ignore, 0) | |
| true_dist.scatter_(1, lm_target.unsqueeze(1), (1 - self.lm_loss_smoothing)) | |
| loss_lm = torch.nn.functional.kl_div( | |
| torch.log_softmax(lm_loss_in, dim=1), | |
| true_dist, | |
| reduction="none", | |
| ) | |
| loss_lm = loss_lm.masked_fill(ignore.unsqueeze(1), 0).sum() / decoder_out.size( | |
| 0 | |
| ) | |
| return loss_lm | |
| def init_beam_search( | |
| self, | |
| **kwargs, | |
| ): | |
| # 1. Build ASR model | |
| scorers = {} | |
| if self.ctc != None: | |
| ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos) | |
| scorers.update(ctc=ctc) | |
| token_list = kwargs.get("token_list") | |
| scorers.update( | |
| length_bonus=LengthBonus(len(token_list)), | |
| ) | |
| # 3. Build ngram model | |
| # ngram is not supported now | |
| ngram = None | |
| scorers["ngram"] = ngram | |
| beam_search = BeamSearchTransducer( | |
| self.decoder, | |
| self.joint_network, | |
| kwargs.get("beam_size", 2), | |
| nbest=1, | |
| ) | |
| # beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() | |
| # for scorer in scorers.values(): | |
| # if isinstance(scorer, torch.nn.Module): | |
| # scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() | |
| self.beam_search = beam_search | |
| def inference( | |
| self, | |
| data_in: list, | |
| data_lengths: list = None, | |
| key: list = None, | |
| tokenizer=None, | |
| **kwargs, | |
| ): | |
| if kwargs.get("batch_size", 1) > 1: | |
| raise NotImplementedError("batch decoding is not implemented") | |
| # init beamsearch | |
| is_use_ctc = ( | |
| kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None | |
| ) | |
| is_use_lm = ( | |
| kwargs.get("lm_weight", 0.0) > 0.00001 | |
| and kwargs.get("lm_file", None) is not None | |
| ) | |
| # if self.beam_search is None and (is_use_lm or is_use_ctc): | |
| logging.info("enable beam_search") | |
| self.init_beam_search(**kwargs) | |
| self.nbest = kwargs.get("nbest", 1) | |
| meta_data = {} | |
| # extract fbank feats | |
| time1 = time.perf_counter() | |
| audio_sample_list = load_audio_text_image_video( | |
| data_in, fs=self.frontend.fs, audio_fs=kwargs.get("fs", 16000) | |
| ) | |
| time2 = time.perf_counter() | |
| meta_data["load_data"] = f"{time2 - time1:0.3f}" | |
| speech, speech_lengths = extract_fbank( | |
| audio_sample_list, | |
| data_type=kwargs.get("data_type", "sound"), | |
| frontend=self.frontend, | |
| ) | |
| time3 = time.perf_counter() | |
| meta_data["extract_feat"] = f"{time3 - time2:0.3f}" | |
| meta_data["batch_data_time"] = ( | |
| speech_lengths.sum().item() | |
| * self.frontend.frame_shift | |
| * self.frontend.lfr_n | |
| / 1000 | |
| ) | |
| speech = speech.to(device=kwargs["device"]) | |
| speech_lengths = speech_lengths.to(device=kwargs["device"]) | |
| # Encoder | |
| encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
| if isinstance(encoder_out, tuple): | |
| encoder_out = encoder_out[0] | |
| # c. Passed the encoder result and the beam search | |
| nbest_hyps = self.beam_search(encoder_out[0], is_final=True) | |
| nbest_hyps = nbest_hyps[: self.nbest] | |
| results = [] | |
| b, n, d = encoder_out.size() | |
| for i in range(b): | |
| for nbest_idx, hyp in enumerate(nbest_hyps): | |
| ibest_writer = None | |
| if kwargs.get("output_dir") is not None: | |
| if not hasattr(self, "writer"): | |
| self.writer = DatadirWriter(kwargs.get("output_dir")) | |
| ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"] | |
| # remove sos/eos and get results | |
| last_pos = -1 | |
| if isinstance(hyp.yseq, list): | |
| token_int = hyp.yseq # [1:last_pos] | |
| else: | |
| token_int = hyp.yseq # [1:last_pos].tolist() | |
| # remove blank symbol id, which is assumed to be 0 | |
| token_int = list( | |
| filter( | |
| lambda x: x != self.eos | |
| and x != self.sos | |
| and x != self.blank_id, | |
| token_int, | |
| ) | |
| ) | |
| # Change integer-ids to tokens | |
| token = tokenizer.ids2tokens(token_int) | |
| text = tokenizer.tokens2text(token) | |
| text_postprocessed, _ = postprocess_utils.sentence_postprocess(token) | |
| result_i = { | |
| "key": key[i], | |
| "token": token, | |
| "text": text, | |
| "text_postprocessed": text_postprocessed, | |
| } | |
| results.append(result_i) | |
| if ibest_writer is not None: | |
| ibest_writer["token"][key[i]] = " ".join(token) | |
| ibest_writer["text"][key[i]] = text | |
| ibest_writer["text_postprocessed"][key[i]] = text_postprocessed | |
| return results, meta_data | |