File size: 8,419 Bytes
f1052d9
a67a3c8
1a244c6
210ed13
b1328e8
210ed13
b4f9b4b
a58c3bb
 
ecc81cb
51883a2
d78e1f7
842b929
 
 
af97d45
bc115c5
 
 
9642724
 
166635a
568c974
66fc53c
695d112
c009b83
 
0e708c0
c009b83
 
695d112
9f1f2bf
994733c
9f1f2bf
 
 
994733c
a8a8725
9f1f2bf
9378132
9f1f2bf
c6d02b3
9f1f2bf
1d16cc9
9f1f2bf
c6d02b3
 
2c7ffe4
 
a597e6b
 
 
 
 
 
 
fd34825
 
706151f
c6e402b
84291d5
7206ba2
a597e6b
48e1ac1
758f177
84291d5
 
f2fa35d
369a3fa
397731d
 
 
 
 
544df84
f2fa35d
eb977a1
83d3e5a
 
 
b4f9b4b
 
 
 
 
842b929
0c2eae0
cde99b9
 
 
 
 
 
 
 
 
 
 
452be41
842b929
0c2eae0
02f6c59
 
 
 
 
 
9642724
51883a2
07d7428
7f06f4f
 
359486d
210ed13
f86add6
a345db9
 
840cd7b
647941b
0ec3daa
840cd7b
a345db9
0ec3daa
a345db9
763a02d
34c1550
33f3309
 
 
210ed13
0ec3daa
 
33f3309
f285313
c3c961a
210ed13
2daa864
 
cacb176
91c50b4
db40b0c
f7a31e7
2daa864
210ed13
 
aac4d05
32ecfac
1acb407
9932afd
0b4c2e7
 
f44b741
993fe5e
 
67f570c
0c2eae0
67f570c
0c2eae0
67f570c
0c2eae0
67f570c
 
 
0c2eae0
8f78275
0c2eae0
02f6c59
993fe5e
86f936d
993fe5e
 
 
 
 
 
 
 
 
67f570c
 
993fe5e
02f6c59
67f570c
8eabfee
86f936d
cb17486
 
 
 
0e5f0ad
cb17486
83b0d34
993fe5e
842b929
83b0d34
 
 
 
86f936d
 
 
 
 
 
 
 
 
 
83b0d34
af8235f
842b929
83b0d34
 
 
 
 
b2ed644
cb17486
c1fef6d
 
 
 
 
 
 
 
 
 
 
 
c009b83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86f936d
c015b60
51883a2
 
c1fef6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import os
import re
import spaces as spaces1, spaces as spaces2
import random
import string
import torch
import requests
import gradio as gr
import numpy as np
from lxml.html import fromstring
#from transformers import pipeline
from torch import multiprocessing as mp
from torch.multiprocessing import Pool as Pool
#from pathos.multiprocessing import ProcessPool as Pool
#from pathos.threading import ThreadPool as Pool
#from diffusers.pipelines.flux import FluxPipeline
#from diffusers.utils import export_to_gif
#from huggingface_hub import hf_hub_download
#from safetensors.torch import load_file
from diffusers import DiffusionPipeline, StableDiffusionXLImg2ImgPipeline
from diffusers.utils import load_image
#import jax
#import jax.numpy as jnp

def port_inc():
    env = os.getenv("CUSTOM_PORT")
    if env == None:
        os.environ["CUSTOM_PORT"]="7860"
    else:
        os.environ["CUSTOM_PORT"]=str(int(env)+1)

def pipe_t2i():
    PIPE = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, token=os.getenv("hf_token")).to("cuda")
    return PIPE
    
def pipe_i2i():
    PIPE = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda")
    PIPE.unet = torch.compile(PIPE.unet, mode="reduce-overhead", fullgraph=True)
    return PIPE

def translate(text,lang):
    if text == None or lang == None:
        return ""       
    text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
    lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()    
    if text == "" or lang == "":
        return ""
    if len(text) > 38:
        raise Exception("Translation Error: Too long text!")
    user_agents = [
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
    ]
    padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip()
    query_text = f'Please translate {padded_chars}, into {lang}'
    url = f'https://www.google.com/search?q={query_text}'
    resp = requests.get(
        url = url,
        headers = {
            'User-Agent': random.choice(user_agents)
        }
    )
    content = resp.content
    html = fromstring(content)
    translated = text
    try:
        src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
        trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip()
        src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
        trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
        if trgt_lang == lang:
            translated = trgt_text
    except:
        print(f'Translation Warning: Failed To Translate!')
    ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
    print(ret)
    return ret

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

@spaces1.GPU(duration=40)
def Piper1(_do):
    print("starting piper1")
    retu = pp1(
        _do,
        height=512,
        width=512,
        num_inference_steps=4,
        max_sequence_length=256,
        guidance_scale=0
    )
    print("returning piper1")
    return retu

@spaces2.GPU(duration=40)
def Piper2(img,posi,neg):
    retu = pp2(
        prompt=posi,
        negative_prompt=neg,
        image=img
    )
    return retu

def tok(pipe,txt):
    toks = pipe.tokenizer(txt)['input_ids']
    print(toks)
    return toks

css="""
input, input::placeholder {
    text-align: center !important;
}
*, *::placeholder {
    direction: ltr !important;
    font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6,span,p,pre {
    width: 100% !important;
    text-align: center !important;
    display: block !important;
}
footer {
    display: none !important;
}
#col-container {
    margin: 0 auto !important;
    max-width: 15cm !important;
 }
.image-container {
    aspect-ratio: 512 / 512 !important;
}
.dropdown-arrow {
    display: none !important;
}
*:has(.btn), .btn {
    width: 100% !important;
    margin: 0 auto !important;
}
"""

js="""
function custom(){
    document.querySelector("div#prompt input").setAttribute("maxlength","38")
    document.querySelector("div#prompt2 input").setAttribute("maxlength","38")
}
"""

def infer1(p):
        print("infer1: started")
        p1 = p["a"]
        print(f'prompt 1: {p1}')
        p2 = p["b"]
        print(f'prompt 2: {p2}')
        name = generate_random_string(12)+".png"
        print(f'name: {name}')
        _do = ['beautiful', 'playful', 'photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable coloring', 'rough texture', 'best quality', 'focused']
        if p1 != "":
            _do.append(f'{p1}')
        posi = " ".join(_do)
        print(posi)
        output = Piper1(posi)
        output.images[0].save(name)
        return name

def infer2(p):
        print("infer2: started")
        p1 = p["a"]
        p2 = p["b"]
        name = p["c"]
        if p2 != "":
            _dont = f'{p2} where in {p1}'
            neg = _dont
        else:
            return name
        img = load_image(name).convert("RGB")
        output2 = Piper2(img,p1,neg)
        output2.images[0].save("_"+name)
        return "_"+name

def run1(p1,p2,*result):
        p1_en = translate(p1,"english")
        p2_en = translate(p2,"english")
        p = {"a":p1_en,"b":p2_en}
        ln = len(result)
        print("images: "+str(ln))
        rng = list(range(ln))
    
        arr1 = [p for _ in rng]
        pool1 = Pool(ln)
        out1 = list(pool1.imap(infer1,arr1))
        pool1.close()
        pool1.join()
        pool1.clear()

        return out1

def run2(p1,p2,*result):
        p1_en = translate(p1,"english")
        p2_en = translate(p2,"english")
        p = {"a":p1_en,"b":p2_en}
        ln = len(result)
        print("images: "+str(ln))
        rng = list(range(ln))
    
        arr2 = [{"a":p1_en,"b":p2_en,"c":out1[_]} for _ in rng]
        pool2 = Pool(ln)
        out2 = list(pool2.imap(infer2,arr2))
        pool2.close()
        pool2.join()
        pool2.clear()
    
        return out2

def main():

    global result
    global pp1
    global pp2

    result=[]
    pp1=pipe_t2i()
    pp2=pipe_i2i()

    mp.set_start_method("spawn", force=True)
    
    with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
        with gr.Column(elem_id="col-container"):
            gr.Markdown(f"""
                # MULTI-LANGUAGE IMAGE GENERATOR
            """)
            with gr.Row():
                prompt = gr.Textbox(
                    elem_id="prompt",
                    placeholder="INCLUDE",
                    container=False,
                    max_lines=1
                )
            with gr.Row():
                prompt2 = gr.Textbox(
                    elem_id="prompt2",
                    placeholder="EXCLUDE",
                    container=False,
                    max_lines=1
                )
            with gr.Row():
                run_button = gr.Button("START",elem_classes="btn",scale=0)
            with gr.Row():
                result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
                result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))

        run_button.click(fn=run1,inputs=[prompt,prompt2,*result],outputs=result).then(fn=run2,inputs=[prompt,prompt2,*result],outputs=result)
        demo.queue().launch()

if __name__ == "__main__":
    main()