Spaces:
Sleeping
Sleeping
File size: 6,856 Bytes
f1052d9 a67a3c8 95af88e 210ed13 b1328e8 210ed13 b4f9b4b a58c3bb ecc81cb 5bab8c7 b632387 210ed13 f8fb4da b632387 210ed13 3ed5fef c6d02b3 1d16cc9 c6d02b3 2c7ffe4 f487489 a597e6b fd34825 706151f c6d02b3 dad7330 c6e402b 84291d5 7206ba2 a597e6b 48e1ac1 758f177 c6d02b3 84291d5 0307843 f2fa35d f487489 369a3fa 397731d 369a3fa 397731d 544df84 f2fa35d eb977a1 0307843 83d3e5a b4f9b4b ff82c2d dd2b7f9 1f747ea 7300f25 6155911 34d26db dd2b7f9 b632387 ff82c2d 452be41 4a68766 b4f9b4b 4a68766 b632387 0c095d9 b632387 4a68766 6280957 0c095d9 6280957 b632387 b4f9b4b 210ed13 f86add6 a345db9 840cd7b 0ec3daa 840cd7b a345db9 0ec3daa a345db9 763a02d 34c1550 33f3309 210ed13 0ec3daa 33f3309 f285313 34d26db 210ed13 2daa864 cacb176 91c50b4 db40b0c f7a31e7 2daa864 210ed13 aac4d05 32ecfac 653a527 0b4c2e7 aac4d05 7dd59c4 210ed13 b632387 210ed13 02471b0 aac4d05 b632387 dd2b7f9 653a527 dd2b7f9 b632387 02471b0 b632387 f285313 01ee4f0 d4ae41a f285313 019b2bc 7dd59c4 019b2bc 4a68766 8b213a4 ec62674 4a68766 ec62674 019b2bc 210ed13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import os
import re
import spaces
import random
import string
import torch
import requests
import gradio as gr
import numpy as np
from lxml.html import fromstring
from pathos.threading import ThreadPool as Pool
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
from diffusers.utils import export_to_gif
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16
step = 8
repo = "ByteDance/AnimateDiff-Lightning"
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
#base = "emilianJR/epiCRealism"
base = "black-forest-labs/FLUX.1-dev"
adapter = MotionAdapter().to(device, dtype)
adapter.load_state_dict(load_file(hf_hub_download(repo ,ckpt), device=device))
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
def translate(text,lang):
if text == None or lang == None:
return ""
text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()
if text == "" or lang == "":
return ""
if len(text) > 38:
raise Exception("Translation Error: Too long text!")
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
]
padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip()
query_text = f'Please translate {padded_chars}, into {lang}'
url = f'https://www.google.com/search?q={query_text}'
print(url)
resp = requests.get(
url = url,
headers = {
'User-Agent': random.choice(user_agents)
}
)
content = resp.content
html = fromstring(content)
translated = text
try:
src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip()
src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
if trgt_lang == lang:
translated = trgt_text
except:
print(f'Translation Warning: Failed To Translate!')
ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
print(ret)
return ret
def generate_random_string(length):
characters = string.ascii_letters + string.digits
return ''.join(random.choice(characters) for _ in range(length))
@spaces.GPU(duration=45)
def Piper(_do,_dont):
return pipe(
_do,
height=256,
width=768,
negative_prompt=_dont,
num_inference_steps=step,
guidance_scale=7
)
def infer(prompt_en,prompt2_en):
name = generate_random_string(12)+".png"
if prompt_en == "":
_do = 'film'
else:
_do = f'filmed { prompt_en }'
if prompt2_en == "":
_dont = 'complex scene, ugly human body, partial human body, smooth texture, fictional content, blurred content, amputated human body, distorted palm fingers, missing legs, unreal eyes, squinting eyes, text anywhere, prints anywhere'
else:
_dont = f'{prompt2_en} anywhere, complex scene, ugly human body, partial human body, smooth texture, fictional content, blurred content, amputated human body, distorted palm fingers, missing legs, unreal eyes, squinting eyes, text anywhere, prints anywhere'
export_to_gif(Piper(_do,_dont).frames[0],name)
return name
css="""
input, input::placeholder {
text-align: center !important;
}
*, *::placeholder {
direction: rtl !important;
font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6,span,p,pre {
width: 100% !important;
text-align: center !important;
display: block !important;
}
footer {
display: none !important;
}
#col-container {
margin: 0 auto !important;
max-width: 15cm !important;
}
.image-container {
aspect-ratio: 768 / 256 !important;
}
.dropdown-arrow {
display: none !important;
}
*:has(.btn), .btn {
width: 100% !important;
margin: 0 auto !important;
}
"""
js="""
function custom(){
document.querySelector("div#prompt input").setAttribute("maxlength","27");
document.querySelector("div#prompt2 input").setAttribute("maxlength","27");
}
"""
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
result = []
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# GIF AI
""")
with gr.Row():
prompt = gr.Textbox(
elem_id="prompt",
placeholder="WHAT TO CREATE...",
container=False,
rtl=True,
max_lines=1
)
with gr.Row():
prompt2 = gr.Textbox(
elem_id="prompt2",
placeholder="WHAT TO AVOID...",
container=False,
rtl=True,
max_lines=1
)
with gr.Row():
run_button = gr.Button("START",elem_classes="btn",scale=0)
with gr.Row():
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
with gr.Row():
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
def _ret(idx,p1,p2):
print(f'Starting {idx}: {p1} {p2}')
v = infer(p1,p2)
print(f'Finished {idx}: {v}')
return v
def _rets(p1,p2):
p1_en = translate(p1,"english")
p2_en = translate(p2,"english")
ln = len(result)
idxs = list(range(ln))
p1s = [p1_en for _ in idxs]
p2s = [p2_en for _ in idxs]
return list(Pool(ln).imap( _ret, idxs, p1s, p2s ))
run_button.click(fn=_rets,inputs=[prompt,prompt2],outputs=result)
demo.queue().launch() |