Kokoro-API-1 / app.py
Yaron Koresh
Update app.py
bcfc748 verified
raw
history blame
6.79 kB
import os
import re
import spaces
import random
import string
import torch
import requests
import gradio as gr
import numpy as np
from lxml.html import fromstring
from diffusers import AutoPipelineForText2Image
#from tempfile import NamedTemporaryFile
#from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
#pool = ProcessPoolExecutor(1000)
#pool.__enter__()
#model_id = "runwayml/stable-diffusion-v1-5"
#model_id = "kandinsky-community/kandinsky-3"
model_id = "stabilityai/stable-diffusion-3-medium-diffusers"
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token'))
pipe = pipe.to(device)
else:
pipe = AutoPipelineForText2Image.from_pretrained(model_id, use_safetensors=True, token=os.getenv('hf_token'))
pipe = pipe.to(device)
def translate(text,lang):
if text == None or lang == None:
return ""
text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()
if text == "" or lang == "":
return ""
if len(text) > 38:
raise Exception("Translation Error: Too long text!")
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
]
padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip()
query_text = f'Please translate {padded_chars}, into {lang}'
url = f'https://www.google.com/search?q={query_text}'
print(url)
resp = requests.get(
url = url,
headers = {
'User-Agent': random.choice(user_agents)
}
)
content = resp.content
html = fromstring(content)
translated = text
try:
src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip()
src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
if trgt_lang == lang:
translated = trgt_text
except:
print(f'Translation Warning: Failed To Translate!')
ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
print(ret)
return ret
def generate_random_string(length):
characters = string.ascii_letters + string.digits
return ''.join(random.choice(characters) for _ in range(length))
@spaces.GPU(duration=40)
def Piper(_do,_dont):
return pipe(
_do,
height=512,
width=1024,
negative_prompt=_dont,
num_inference_steps=50,
guidance_scale=2
)
def infer(prompt,prompt2):
name = generate_random_string(12)+".png"
prompt_en = translate(prompt,"english")
prompt2_en = translate(prompt2,"english")
if prompt == None or prompt.strip() == "":
_do = 'realistic natural sharp light vivid vintage coloring, rough texture, dynamic poze, reasonable proportions'
else:
_do = f'real photographed { prompt_en } scene, realistic natural sharp light vivid vintage coloring, rough texture, dynamic poze, reasonable proportions'
if prompt2 == None or prompt2.strip() == "":
_dont = 'blurred, distorted items, disfigured fingers, unreal hands, unreasonable scene, ugly presentation, deformed palms, bad anatomy, poor details, visible logos, visible texts, visible labels'
else:
_dont = f'{prompt2_en}, {prompt2_en} where in {prompt_en}, labels where in {prompt_en}, blurred, distorted items, disfigured fingers, unreal hands, unreasonable scene, ugly presentation, deformed palms, bad anatomy, poor details, logos, texts'
image = Piper(_do,_dont).images[0].save(name)
return name
css="""
input::placeholder {
text-align: center !important;
}
*, *::placeholder {
direction: rtl !important;
font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6,span,p,pre {
width: 100% !important;
text-align: center !important;
display: block !important;
}
footer {
display: none !important;
}
#col-container {
margin: 0 auto !important;
max-width: 15cm !important;
}
#image-container {
aspect-ratio: 1024 / 512 !important;
}
.dropdown-arrow {
display: none !important;
}
"""
js="""
function custom(){
document.querySelector("div#prompt input").setAttribute("maxlength","27");
document.querySelector("div#prompt2 input").setAttribute("maxlength","27");
}
"""
if torch.cuda.is_available():
power_device = "诪注讘讚 讙专驻讬"
else:
power_device = "诪注讘讚 诇讜讙讬"
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# 转诪讜谞讜转 讗讬讻讜转讬讜转 诪讘讬谞讛 诪诇讗讻讜转讬转
专抓 注诇 {power_device}
""")
with gr.Row():
prompt = gr.Textbox(
elem_id="prompt",
placeholder="诪讛 *讻谉* 诇讛讜住讬祝",
container=False,
rtl=True,
max_lines=1
)
with gr.Row():
prompt2 = gr.Textbox(
elem_id="prompt2",
placeholder="诪讛 *诇讗* 诇讛讜住讬祝",
container=False,
rtl=True,
max_lines=1
)
with gr.Row():
run_button = gr.Button("讛转讞诇讛")
result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)
prompt.submit(
fn = infer,
inputs = [prompt,prompt2],
outputs = [result]
)
prompt2.submit(
fn = infer,
inputs = [prompt,prompt2],
outputs = [result]
)
run_button.click(
fn = infer,
inputs = [prompt,prompt2],
outputs = [result]
)
demo.queue().launch()