Kokoro-API-1 / app.py
Yaron Koresh
Update app.py
f968442 verified
raw
history blame
26.9 kB
from langdetect import detect as get_language
from collections import namedtuple
from inspect import signature
import os
import subprocess
import logging
import re
import random
from string import ascii_letters, digits, punctuation
import requests
import sys
import warnings
import time
import asyncio
import math
from pathlib import Path
from functools import partial
from dataclasses import dataclass
from typing import Any
import pillow_heif
import spaces
import numpy as np
import numpy.typing as npt
import torch
from torch import nn
import gradio as gr
from lxml.html import fromstring
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import FluxPipeline
from PIL import Image, ImageDraw, ImageFont
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
from refiners.fluxion.utils import manual_seed
from refiners.foundationals.latent_diffusion import Solver, solvers
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
MultiUpscaler,
UpscalerCheckpoints,
)
from datetime import datetime
model = T5ForConditionalGeneration.from_pretrained("t5-large")
tokenizer = T5Tokenizer.from_pretrained("t5-large")
def log(msg):
print(f'{datetime.now().time()} {msg}')
Tile = tuple[int, int, Image.Image]
Tiles = list[tuple[int, int, list[Tile]]]
def conv_block(in_nc: int, out_nc: int) -> nn.Sequential:
return nn.Sequential(
nn.Conv2d(in_nc, out_nc, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
)
class ResidualDenseBlock_5C(nn.Module):
"""
Residual Dense Block
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
Modified options that can be used:
- "Partial Convolution based Padding" arXiv:1811.11718
- "Spectral normalization" arXiv:1802.05957
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
{Rakotonirina} and A. {Rasoanaivo}
"""
def __init__(self, nf: int = 64, gc: int = 32) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
self.conv1 = conv_block(nf, gc)
self.conv2 = conv_block(nf + gc, gc)
self.conv3 = conv_block(nf + 2 * gc, gc)
self.conv4 = conv_block(nf + 3 * gc, gc)
# Wrapped in Sequential because of key in state dict.
self.conv5 = nn.Sequential(nn.Conv2d(nf + 4 * gc, nf, kernel_size=3, padding=1))
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1 = self.conv1(x)
x2 = self.conv2(torch.cat((x, x1), 1))
x3 = self.conv3(torch.cat((x, x1, x2), 1))
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5 * 0.2 + x
class RRDB(nn.Module):
"""
Residual in Residual Dense Block
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
"""
def __init__(self, nf: int) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
self.RDB1 = ResidualDenseBlock_5C(nf)
self.RDB2 = ResidualDenseBlock_5C(nf)
self.RDB3 = ResidualDenseBlock_5C(nf)
def forward(self, x: torch.Tensor) -> torch.Tensor:
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
return out * 0.2 + x
class Upsample2x(nn.Module):
"""Upsample 2x."""
def __init__(self) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
def forward(self, x: torch.Tensor) -> torch.Tensor:
return nn.functional.interpolate(x, scale_factor=2.0) # type: ignore
class ShortcutBlock(nn.Module):
"""Elementwise sum the output of a submodule to its input"""
def __init__(self, submodule: nn.Module) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
self.sub = submodule
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self.sub(x)
class RRDBNet(nn.Module):
def __init__(self, in_nc: int, out_nc: int, nf: int, nb: int) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
assert in_nc % 4 != 0 # in_nc is 3
self.model = nn.Sequential(
nn.Conv2d(in_nc, nf, kernel_size=3, padding=1),
ShortcutBlock(
nn.Sequential(
*(RRDB(nf) for _ in range(nb)),
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
)
),
Upsample2x(),
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
Upsample2x(),
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(nf, out_nc, kernel_size=3, padding=1),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.model(x)
def infer_params(state_dict: dict[str, torch.Tensor]) -> tuple[int, int, int, int, int]:
# this code is adapted from https://github.com/victorca25/iNNfer
scale2x = 0
scalemin = 6
n_uplayer = 0
out_nc = 0
nb = 0
for block in list(state_dict):
parts = block.split(".")
n_parts = len(parts)
if n_parts == 5 and parts[2] == "sub":
nb = int(parts[3])
elif n_parts == 3:
part_num = int(parts[1])
if part_num > scalemin and parts[0] == "model" and parts[2] == "weight":
scale2x += 1
if part_num > n_uplayer:
n_uplayer = part_num
out_nc = state_dict[block].shape[0]
assert "conv1x1" not in block # no ESRGANPlus
nf = state_dict["model.0.weight"].shape[0]
in_nc = state_dict["model.0.weight"].shape[1]
scale = 2**scale2x
assert out_nc > 0
assert nb > 0
return in_nc, out_nc, nf, nb, scale # 3, 3, 64, 23, 4
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L64
Grid = namedtuple("Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"])
# adapted from https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L67
def split_grid(image: Image.Image, tile_w: int = 512, tile_h: int = 512, overlap: int = 64) -> Grid:
w = image.width
h = image.height
non_overlap_width = tile_w - overlap
non_overlap_height = tile_h - overlap
cols = max(1, math.ceil((w - overlap) / non_overlap_width))
rows = max(1, math.ceil((h - overlap) / non_overlap_height))
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
grid = Grid([], tile_w, tile_h, w, h, overlap)
for row in range(rows):
row_images: list[Tile] = []
y1 = max(min(int(row * dy), h - tile_h), 0)
y2 = min(y1 + tile_h, h)
for col in range(cols):
x1 = max(min(int(col * dx), w - tile_w), 0)
x2 = min(x1 + tile_w, w)
tile = image.crop((x1, y1, x2, y2))
row_images.append((x1, tile_w, tile))
grid.tiles.append((y1, tile_h, row_images))
return grid
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L104
def combine_grid(grid: Grid):
def make_mask_image(r: npt.NDArray[np.float32]) -> Image.Image:
r = r * 255 / grid.overlap
return Image.fromarray(r.astype(np.uint8), "L")
mask_w = make_mask_image(
np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)
)
mask_h = make_mask_image(
np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)
)
combined_image = Image.new("RGB", (grid.image_w, grid.image_h))
for y, h, row in grid.tiles:
combined_row = Image.new("RGB", (grid.image_w, h))
for x, w, tile in row:
if x == 0:
combined_row.paste(tile, (0, 0))
continue
combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w)
combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0))
if y == 0:
combined_image.paste(combined_row, (0, 0))
continue
combined_image.paste(
combined_row.crop((0, 0, combined_row.width, grid.overlap)),
(0, y),
mask=mask_h,
)
combined_image.paste(
combined_row.crop((0, grid.overlap, combined_row.width, h)),
(0, y + grid.overlap),
)
return combined_image
class UpscalerESRGAN:
def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype):
self.model_path = model_path
self.device = device
self.model = self.load_model(model_path)
self.to(device, dtype)
def __call__(self, img: Image.Image) -> Image.Image:
return self.upscale_without_tiling(img)
def to(self, device: torch.device, dtype: torch.dtype):
self.device = device
self.dtype = dtype
self.model.to(device=device, dtype=dtype)
def load_model(self, path: Path) -> RRDBNet:
filename = path
state_dict: dict[str, torch.Tensor] = torch.load(filename, weights_only=True, map_location=self.device) # type: ignore
in_nc, out_nc, nf, nb, upscale = infer_params(state_dict)
assert upscale == 4, "Only 4x upscaling is supported"
model = RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb)
model.load_state_dict(state_dict)
model.eval()
return model
def upscale_without_tiling(self, img: Image.Image) -> Image.Image:
img_np = np.array(img)
img_np = img_np[:, :, ::-1]
img_np = np.ascontiguousarray(np.transpose(img_np, (2, 0, 1))) / 255
img_t = torch.from_numpy(img_np).float() # type: ignore
img_t = img_t.unsqueeze(0).to(device=self.device, dtype=self.dtype)
with torch.no_grad():
output = self.model(img_t)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
output = 255.0 * np.moveaxis(output, 0, 2)
output = output.astype(np.uint8)
output = output[:, :, ::-1]
return Image.fromarray(output, "RGB")
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/esrgan_model.py#L208
def upscale_with_tiling(self, img: Image.Image) -> Image.Image:
img = img.convert("RGB")
grid = split_grid(img)
newtiles: Tiles = []
scale_factor: int = 1
for y, h, row in grid.tiles:
newrow: list[Tile] = []
for tiledata in row:
x, w, tile = tiledata
output = self.upscale_without_tiling(tile)
scale_factor = output.width // tile.width
newrow.append((x * scale_factor, w * scale_factor, output))
newtiles.append((y * scale_factor, h * scale_factor, newrow))
newgrid = Grid(
newtiles,
grid.tile_w * scale_factor,
grid.tile_h * scale_factor,
grid.image_w * scale_factor,
grid.image_h * scale_factor,
grid.overlap * scale_factor,
)
output = combine_grid(newgrid)
return output
@dataclass(kw_only=True)
class ESRGANUpscalerCheckpoints(UpscalerCheckpoints):
esrgan: Path
class ESRGANUpscaler(MultiUpscaler):
def __init__(
self,
checkpoints: ESRGANUpscalerCheckpoints,
device: torch.device,
dtype: torch.dtype,
) -> None:
super().__init__(checkpoints=checkpoints, device=device, dtype=dtype)
self.esrgan = UpscalerESRGAN(checkpoints.esrgan, device=self.device, dtype=self.dtype)
def to(self, device: torch.device, dtype: torch.dtype):
self.esrgan.to(device=device, dtype=dtype)
self.sd = self.sd.to(device=device, dtype=dtype)
self.device = device
self.dtype = dtype
def pre_upscale(self, image: Image.Image, upscale_factor: float, **_: Any) -> Image.Image:
image = self.esrgan.upscale_with_tiling(image)
return super().pre_upscale(image=image, upscale_factor=upscale_factor / 4)
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
CHECKPOINTS = ESRGANUpscalerCheckpoints(
unet=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.unet",
filename="model.safetensors",
revision="347d14c3c782c4959cc4d1bb1e336d19f7dda4d2",
)
),
clip_text_encoder=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.text_encoder",
filename="model.safetensors",
revision="744ad6a5c0437ec02ad826df9f6ede102bb27481",
)
),
lda=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.autoencoder",
filename="model.safetensors",
revision="3c1aae3fc3e03e4a2b7e0fa42b62ebb64f1a4c19",
)
),
controlnet_tile=Path(
hf_hub_download(
repo_id="refiners/controlnet.sd1_5.tile",
filename="model.safetensors",
revision="48ced6ff8bfa873a8976fa467c3629a240643387",
)
),
esrgan=Path(
hf_hub_download(
repo_id="philz1337x/upscaler",
filename="4x-UltraSharp.pth",
revision="011deacac8270114eb7d2eeff4fe6fa9a837be70",
)
),
negative_embedding=Path(
hf_hub_download(
repo_id="philz1337x/embeddings",
filename="JuggernautNegative-neg.pt",
revision="203caa7e9cc2bc225031a4021f6ab1ded283454a",
)
),
negative_embedding_key="string_to_param.*",
loras={
"more_details": Path(
hf_hub_download(
repo_id="philz1337x/loras",
filename="more_details.safetensors",
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
)
),
"sdxl_render": Path(
hf_hub_download(
repo_id="philz1337x/loras",
filename="SDXLrender_v2.0.safetensors",
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
)
)
}
)
device = DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=DEVICE, dtype=DTYPE)
# logging
warnings.filterwarnings("ignore")
root = logging.getLogger()
root.setLevel(logging.WARN)
handler = logging.StreamHandler(sys.stderr)
handler.setLevel(logging.WARN)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler.setFormatter(formatter)
root.addHandler(handler)
# constant data
base = "black-forest-labs/FLUX.1-schnell"
# precision data
seq=256
width=2048
height=2048
image_steps=8
img_accu=0
# ui data
css="".join(["""
input, input::placeholder {
text-align: center !important;
}
*, *::placeholder {
font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
width: 100%;
text-align: center;
}
footer {
display: none !important;
}
.image-container {
aspect-ratio: """,str(width),"/",str(height),""" !important;
}
.dropdown-arrow {
display: none !important;
}
*:has(>.btn) {
display: flex;
justify-content: space-evenly;
align-items: center;
}
.btn {
display: flex;
}
"""])
js="""
function custom(){
document.querySelector("div#prompt input").addEventListener("keydown",function(e){
e.target.setAttribute("last_value",e.target.value);
});
document.querySelector("div#prompt input").addEventListener("input",function(e){
if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){
e.target.value = e.target.getAttribute("last_value");
e.target.removeAttribute("last_value");
}
});
document.querySelector("div#prompt2 input").addEventListener("keydown",function(e){
e.target.setAttribute("last_value",e.target.value);
});
document.querySelector("div#prompt2 input").addEventListener("input",function(e){
if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){
e.target.value = e.target.getAttribute("last_value");
e.target.removeAttribute("last_value");
}
});
}
"""
# torch pipes
image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device)
image_pipe.enable_model_cpu_offload()
image_pipe.enable_vae_slicing()
image_pipe.enable_vae_tiling()
# functionality
def upscaler(
input_image: Image.Image,
prompt: str = "Photorealistic, Hyperrealistic, Realistic Photography, High-Quality Photography, Natural.",
negative_prompt: str = "Distorted, Discontinuous, Blurry, Doll-Like, Overly-Plastic, Low-Quality, Painted, Smoothed, Artificial, Phony, Gaudy, Digital Effects.",
seed: int = int(str(random.random()).split(".")[1]),
upscale_factor: int = 2,
controlnet_scale: float = 0.6,
controlnet_decay: float = 1.0,
condition_scale: int = 6,
tile_width: int = 112,
tile_height: int = 144,
denoise_strength: float = 0.35,
num_inference_steps: int = 30,
solver: str = "DDIM",
) -> Image.Image:
log(f'CALL upscaler')
manual_seed(seed)
solver_type: type[Solver] = getattr(solvers, solver)
log(f'DBG upscaler 1')
enhanced_image = enhancer.upscale(
image=input_image,
prompt=prompt,
negative_prompt=negative_prompt,
upscale_factor=upscale_factor,
controlnet_scale=controlnet_scale,
controlnet_scale_decay=controlnet_decay,
condition_scale=condition_scale,
tile_size=(tile_height, tile_width),
denoise_strength=denoise_strength,
num_inference_steps=num_inference_steps,
loras_scale={"more_details": 0.5, "sdxl_render": 1.0},
solver_type=solver_type,
)
log(f'RET upscaler')
return enhanced_image
def get_tensor_length(tensor):
nums = list(tensor.size())
ret = 1
for num in nums:
ret = ret * num
return ret
def summarize(
text, max_len=20, min_len=10
):
log(f'CALL summarize')
words = text.split()
if get_tensor_length(words) < 5:
print("Summarization Error: Text is too short, 5 words minimum!")
return text
prefix = "summarize: "
ret = ""
for index in math.ceil( len(words) / 512 ):
chunk = " ".join(words[ index*512:(index+1)*512 ])
inputs = tokenizer.encode( prefix + chunk, return_tensors="pt", max_length=float('inf'), truncation=False)
while get_tensor_length(inputs) > max_len:
inputs = model.generate(
inputs,
length_penalty=2.0,
num_beams=4,
early_stopping=True,
max_length=max( get_tensor_length(inputs) // 4 , max_len ),
min_length=min_len
)
toks = tokenizer.decode(inputs[0], skip_special_tokens=True)
ret = ret + ("" if ret == "" else " ") + toks
inputs = tokenizer.encode( prefix + ret, return_tensors="pt", max_length=float('inf'), truncation=False)
gen = model.generate(
inputs,
length_penalty=1.0,
num_beams=4,
early_stopping=True,
max_length=max_len,
min_length=min_len
)
summary = tokenizer.decode(gen[0], skip_special_tokens=True)
log(f'RET summarize with summary as {summary}')
return summary
def generate_random_string(length):
characters = str(ascii_letters + digits)
return ''.join(random.choice(characters) for _ in range(length))
def pipe_generate_image(p1,p2):
log(f'CALL pipe_generate')
imgs = image_pipe(
prompt=p1,
negative_prompt=p2,
height=height,
width=width,
guidance_scale=img_accu,
num_images_per_prompt=1,
num_inference_steps=image_steps,
max_sequence_length=seq,
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
).images
log(f'RET pipe_generate')
return imgs
def add_song_cover_text(img,artist,song,height,width):
draw = ImageDraw.Draw(img,mode="RGBA")
rows = 1
labels_distance = 1/3
textheight=min(math.ceil( width / 10 ), math.ceil( height / 5 ))
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
textwidth = draw.textlength(song,font)
x = math.ceil((width - textwidth) / 2)
y = height - (textheight * rows / 2) - (height / 2)
y = math.ceil(y - (height / 2 * labels_distance))
draw.text((x, y), song, (255,255,255,85), font=font, spacing=2, stroke_width=math.ceil(textheight/20), stroke_fill=(0,0,0,170))
textheight=min(math.ceil( width / 10 ), math.ceil( height / 5 ))
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
textwidth = draw.textlength(artist,font)
x = math.ceil((width - textwidth) / 2)
y = height - (textheight * rows / 2) - (height / 2)
y = math.ceil(y + (height / 2 * labels_distance))
draw.text((x, y), artist, (0,0,0,85), font=font, spacing=2, stroke_width=math.ceil(textheight/20), stroke_fill=(255,255,255,170))
return img
def all_pipes(pos,neg,artist,song):
imgs = pipe_generate_image(pos,neg)
for i in range(len(imgs)):
imgs[i] = upscaler(imgs[i])
return imgs
language_codes = {
"af": "Afrikaans",
"ar": "Arabic",
"bg": "Bulgarian",
"bn": "Bengali",
"ca": "Catalan",
"cs": "Czech",
"cy": "Welsh",
"da": "Danish",
"de": "German",
"el": "Greek",
"en": "English",
"es": "Spanish",
"et": "Estonian",
"fa": "Persian (Farsi)",
"fi": "Finnish",
"fr": "French",
"gu": "Gujarati",
"he": "Hebrew",
"hi": "Hindi",
"hr": "Croatian",
"hu": "Hungarian",
"id": "Indonesian",
"it": "Italian",
"ja": "Japanese",
"kn": "Kannada",
"ko": "Korean",
"lt": "Lithuanian",
"lv": "Latvian",
"mk": "Macedonian",
"ml": "Malayalam",
"mr": "Marathi",
"ne": "Nepali",
"nl": "Dutch",
"no": "Norwegian",
"pa": "Punjabi",
"pl": "Polish",
"pt": "Portuguese",
"ro": "Romanian",
"ru": "Russian",
"sk": "Slovak",
"sl": "Slovenian",
"so": "Somali",
"sq": "Albanian",
"sv": "Swedish",
"sw": "Swahili",
"ta": "Tamil",
"te": "Telugu",
"th": "Thai",
"tl": "Tagalog (Filipino)",
"tr": "Turkish",
"uk": "Ukrainian",
"ur": "Urdu",
"vi": "Vietnamese",
"zh-cn": "Chinese (Simplified)",
"zh-tw": "Chinese (Traditional)",
}
def translate(txt,to_lang="en",from_lang=False):
log(f'CALL translate')
if not from_lang:
from_lang = get_language(txt)
if(from_lang == to_lang):
log(f'RET translate with txt as {txt}')
return txt
prefix = f"translate {language_codes[from_lang]} to {language_codes[to_lang]}: "
words = txt.split()
ret = ""
for index in math.ceil( len(words) / 512 ):
chunk = " ".join(words[ index*512:(index+1)*512 ])
inputs = tokenizer.encode(prefix+chunk, return_tensors="pt", max_length=float('inf'), truncation=False)
gen = model.generate(chunk,input)
toks = tokenizer.decode(gen[0], skip_special_tokens=True)
ret = ret + ("" if ret == "" else " ") + toks
log(f'RET translate with ret as {ret}')
return ret
@spaces.GPU(duration=300)
def handle_generation(artist,song,genre,lyrics):
log(f'CALL handle_generate')
pos_artist = re.sub("([ \t\n]){1,}", " ", artist).upper().strip()
pos_song = re.sub("([ \t\n]){1,}", " ", song).lower().strip()
pos_song = ' '.join(word[0].upper() + word[1:] for word in pos_song.split())
pos_genre = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).lower().strip()
pos_genre = ' '.join(word[0].upper() + word[1:] for word in pos_genre.split())
pos_lyrics = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", lyrics)).lower().strip()
pos_lyrics_sum = pos_lyrics if pos_lyrics == "" else summarize(translate(pos_lyrics))
neg = f"Sexuality, Humanity, Textual, Labeled, Distorted, Discontinuous, Blurry, Doll-Like, Overly Plastic, Low-Quality, Painted, Smoothed, Artificial, Phony, Gaudy, Digital Effects."
q = "\""
pos = f'HQ Hyper-realistic { translate(pos_genre) } song "{ translate(pos_song) }"{ pos_lyrics_sum if pos_lyrics_sum == "" else ": " + pos_lyrics_sum }.'
print(f"""
Positive: {pos}
Negative: {neg}
""")
imgs = all_pipes(pos,neg,pos_artist,pos_song)
index = 1
names = []
for img in imgs:
scaled_by = 2
labeled_img = add_song_cover_text(img,artist,song,height*scaled_by,width*scaled_by)
name = f'{artist} - {song} ({index}).png'
labeled_img.save(name)
names.append(name)
index = index + 1
# return names
return names[0]
# entry
if __name__ == "__main__":
with gr.Blocks(theme=gr.themes.Citrus(),css=css) as demo:
gr.Markdown(f"""
# Song Cover Image Generator
""")
with gr.Row():
with gr.Column(scale=4):
artist = gr.Textbox(
placeholder="Artist name",
value="",
container=False,
max_lines=1
)
song = gr.Textbox(
placeholder="Song name",
value="",
container=False,
max_lines=1
)
genre = gr.Textbox(
placeholder="Genre",
value="",
container=False,
max_lines=1
)
lyrics = gr.Textbox(
placeholder="Lyrics",
value="",
container=False,
max_lines=1
)
with gr.Column():
cover = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
run = gr.Button("Generate",elem_classes="btn")
run.click(
fn=handle_generation,
inputs=[artist,song,genre,lyrics],
outputs=[cover]
)
demo.queue().launch()