Yaron Koresh commited on
Commit
62c5b0c
·
verified ·
1 Parent(s): 84f9d3c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -100
app.py CHANGED
@@ -1,47 +1,35 @@
1
  import gradio as gr
 
 
2
  import numpy as np
3
  import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
 
 
 
 
 
6
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
  if torch.cuda.is_available():
10
  torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
  pipe.enable_xformers_memory_efficient_attention()
13
  pipe = pipe.to(device)
14
  else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
  pipe = pipe.to(device)
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
-
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
-
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
39
-
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
 
46
  css="""
47
  #col-container {
@@ -56,15 +44,12 @@ else:
56
  power_device = "CPU"
57
 
58
  with gr.Blocks(css=css) as demo:
59
-
60
  with gr.Column(elem_id="col-container"):
61
  gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
  """)
65
-
66
  with gr.Row():
67
-
68
  prompt = gr.Text(
69
  label="Prompt",
70
  show_label=False,
@@ -72,74 +57,11 @@ with gr.Blocks(css=css) as demo:
72
  placeholder="Enter your prompt",
73
  container=False,
74
  )
75
-
76
  run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
-
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
-
140
  run_button.click(
141
  fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
  outputs = [result]
144
  )
145
 
 
1
  import gradio as gr
2
+ import spaces
3
+ from tempfile import NamedTemporaryFile
4
  import numpy as np
5
  import random
6
+ from diffusers import StableDiffusionPipeline as DiffusionPipeline
7
  import torch
8
+ from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
9
+
10
+ pool = ProcessPoolExecutor(100)
11
+ pool.__enter__()
12
+
13
+ model_id = "runwayml/stable-diffusion-v1-5"
14
 
15
  device = "cuda" if torch.cuda.is_available() else "cpu"
16
 
17
  if torch.cuda.is_available():
18
  torch.cuda.max_memory_allocated(device=device)
19
+ pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
20
  pipe.enable_xformers_memory_efficient_attention()
21
  pipe = pipe.to(device)
22
  else:
23
+ pipe = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
24
  pipe = pipe.to(device)
25
 
26
+ @spaces.GPU(10)
27
+ def infer(prompt):
28
+ image = pipe(prompt).images[0]
29
+ ret = None
30
+ with NamedTemporaryFile("wb", suffix=".png", delete=False) as file:
31
+ ret = file.name
32
+ return ret
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  css="""
35
  #col-container {
 
44
  power_device = "CPU"
45
 
46
  with gr.Blocks(css=css) as demo:
 
47
  with gr.Column(elem_id="col-container"):
48
  gr.Markdown(f"""
49
+ # Image Generator
50
+ Currently running on {power_device}.
51
  """)
 
52
  with gr.Row():
 
53
  prompt = gr.Text(
54
  label="Prompt",
55
  show_label=False,
 
57
  placeholder="Enter your prompt",
58
  container=False,
59
  )
 
60
  run_button = gr.Button("Run", scale=0)
61
+ result = gr.Image(label="Result", show_label=False, type='filepath')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  run_button.click(
63
  fn = infer,
64
+ inputs = [prompt],
65
  outputs = [result]
66
  )
67