Yaron Koresh commited on
Commit
d4b458d
·
verified ·
1 Parent(s): 2b8a9a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -16
app.py CHANGED
@@ -30,7 +30,7 @@ from huggingface_hub import hf_hub_download
30
  from safetensors.torch import load_file, save_file
31
  from diffusers import FluxPipeline
32
  from PIL import Image, ImageDraw, ImageFont
33
- from transformers import pipeline, MT5ForConditionalGeneration, T5Tokenizer
34
  from refiners.fluxion.utils import manual_seed
35
  from refiners.foundationals.latent_diffusion import Solver, solvers
36
  from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
@@ -38,9 +38,11 @@ from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler i
38
  UpscalerCheckpoints,
39
  )
40
  from datetime import datetime
 
 
 
 
41
 
42
- model = MT5ForConditionalGeneration.from_pretrained("google/mt5-xl")
43
- tokenizer = T5Tokenizer.from_pretrained("google/mt5-xl")
44
 
45
  def log(msg):
46
  print(f'{datetime.now().time()} {msg}')
@@ -716,22 +718,14 @@ def translate(txt,to_lang="en",from_lang=False):
716
  log(f'CALL translate')
717
  if not from_lang:
718
  from_lang = get_language(txt)
719
- print(f"translating from {from_lang} to {to_lang}")
720
  if(from_lang == to_lang):
721
  log(f'RET translate with txt as {txt}')
722
  return txt
723
- prefix = f"translate {language_codes[from_lang]} to {language_codes[to_lang]}: "
724
- words = txt.split()
725
- ret = ""
726
- for index in range(math.ceil( len(words) / 500 )):
727
- chunk = " ".join(words[index*500:(index+1)*500])
728
- log(f'DBG translate chunk is {chunk}')
729
- inputs = tokenizer.encode(prefix+chunk, return_tensors="pt", truncation=False, add_special_tokens=True)
730
- gen = model.generate(inputs,num_beams=3)
731
- toks = tokenizer.decode(gen[0], skip_special_tokens=True)
732
- ret = ret + ("" if ret == "" else " ") + toks
733
- log(f'RET translate with ret as {ret}')
734
- return ret
735
 
736
  @spaces.GPU(duration=300)
737
  def handle_generation(artist,song,genre,lyrics):
 
30
  from safetensors.torch import load_file, save_file
31
  from diffusers import FluxPipeline
32
  from PIL import Image, ImageDraw, ImageFont
33
+ from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
34
  from refiners.fluxion.utils import manual_seed
35
  from refiners.foundationals.latent_diffusion import Solver, solvers
36
  from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
 
38
  UpscalerCheckpoints,
39
  )
40
  from datetime import datetime
41
+ from translate import Translator
42
+
43
+ model = T5ForConditionalGeneration.from_pretrained("t5-large")
44
+ tokenizer = T5Tokenizer.from_pretrained("t5-large")
45
 
 
 
46
 
47
  def log(msg):
48
  print(f'{datetime.now().time()} {msg}')
 
718
  log(f'CALL translate')
719
  if not from_lang:
720
  from_lang = get_language(txt)
 
721
  if(from_lang == to_lang):
722
  log(f'RET translate with txt as {txt}')
723
  return txt
724
+
725
+ translator = Translator(from_lang=from_lang,to_lang=to_lang)
726
+ translation = translator.translate(txt)
727
+ log(f'RET translate with translation as {translation}')
728
+ return translation
 
 
 
 
 
 
 
729
 
730
  @spaces.GPU(duration=300)
731
  def handle_generation(artist,song,genre,lyrics):