Yaron Koresh commited on
Commit
e7348c9
·
verified ·
1 Parent(s): 0363730

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -19
app.py CHANGED
@@ -28,7 +28,7 @@ from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, Eul
28
  #import jax
29
  #import jax.numpy as jnp
30
  from numba import cuda, njit as cpu, void, int64 as int, float64 as float, boolean as bool, uint8 as rgb
31
- from numba.cuda import jit as gpu, grid
32
  from numba.types import unicode_type as string
33
  from PIL.Image import fromarray as array2image
34
  import numpy as np
@@ -119,6 +119,23 @@ function custom(){
119
  }
120
  """
121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
  # functionality
123
 
124
  def run(cmd):
@@ -174,6 +191,7 @@ def generate_random_string(length):
174
  def calc(img,p1,p2,motion):
175
  global out_pipe
176
  global last_motion
 
177
 
178
  x = grid(1)
179
 
@@ -295,23 +313,6 @@ def ui():
295
  result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
296
  demo.queue().launch()
297
 
298
- @gpu(void())
299
- def pre():
300
- global pipe
301
- pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device)
302
- pipe.scheduler = DDIMScheduler(
303
- clip_sample=False,
304
- beta_start=0.00085,
305
- beta_end=0.012,
306
- beta_schedule="linear",
307
- timestep_spacing="trailing",
308
- steps_offset=1
309
- )
310
- pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
311
- pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
312
- pipe.enable_vae_slicing()
313
- pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)
314
-
315
  @gpu(void())
316
  def events():
317
  gr.on(
@@ -327,7 +328,7 @@ def events():
327
 
328
  def entry():
329
  os.chdir(os.path.abspath(os.path.dirname(__file__)))
330
- pre[1,32]()
331
  ui()
332
  events[1,32]()
333
 
 
28
  #import jax
29
  #import jax.numpy as jnp
30
  from numba import cuda, njit as cpu, void, int64 as int, float64 as float, boolean as bool, uint8 as rgb
31
+ from numba.cuda import jit as gpu, grid, as_cuda_array as tensor2array
32
  from numba.types import unicode_type as string
33
  from PIL.Image import fromarray as array2image
34
  import numpy as np
 
119
  }
120
  """
121
 
122
+ # torch pipe
123
+
124
+ pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device)
125
+ pipe.scheduler = DDIMScheduler(
126
+ clip_sample=False,
127
+ beta_start=0.00085,
128
+ beta_end=0.012,
129
+ beta_schedule="linear",
130
+ timestep_spacing="trailing",
131
+ steps_offset=1
132
+ )
133
+ pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
134
+ pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
135
+ pipe.enable_vae_slicing()
136
+ pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)
137
+
138
+
139
  # functionality
140
 
141
  def run(cmd):
 
191
  def calc(img,p1,p2,motion):
192
  global out_pipe
193
  global last_motion
194
+ global pipe
195
 
196
  x = grid(1)
197
 
 
313
  result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
314
  demo.queue().launch()
315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
316
  @gpu(void())
317
  def events():
318
  gr.on(
 
328
 
329
  def entry():
330
  os.chdir(os.path.abspath(os.path.dirname(__file__)))
331
+
332
  ui()
333
  events[1,32]()
334